Skip to main content

Advertisement

Log in

In vitro susceptibility of methicillin-resistant and methicillin-susceptible strains of Staphylococcus aureus to two different cold atmospheric plasma sources

  • Original Paper
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Background

Staphylococcus aureus may be the most important wound pathogen and causative for most of surgical site infections. As many anti-staphylococcal drugs are useless because of resistance, novel antimicrobial strategies are strongly needed and may be provided by cold atmospheric plasma (CP), which is being currently investigated for antiseptic efficacy.

Methods

To test the antimicrobial properties of CP against Staphylococcus aureus, 168 methicillin-susceptible isolates (MSSA) and 50 methicillin-resistant isolates (MRSA) were treated with two technically different plasma sources [an atmospheric pressure plasma jet (APPJ) and a dielectric barrier discharge plasma (DBD)] in vitro.

Results

CP treatment allowed a reproducible and significant growth reduction of MRSA and MSSA. However, MRSA was significantly less susceptible to treatment with DBD than was MSSA, while no difference between MRSA and MSSA was found using APPJ.

Conclusions

As the initial physical antiseptic on skin, CP may be suitable for rapid decolonization of microbial pathogens in vivo. Each device must undergo validated efficacy testing prior to clinical application, as device related differences may occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

References

  1. Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest. 2003;111:1265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. U.S. Department of Health and Human Services. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. 2013;5–113.

  3. Köck R, Schaumburg F, Mellmann A, et al. Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany. PLoS ONE. 2013;8:e55040.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cosgrove SE, Sakoulas G, Perencevich EN, et al. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003;36:53–9.

    Article  PubMed  Google Scholar 

  5. Wijaya L, Hsu LY, Kurup A. Community-associated methicillin-resistant Staphylococcus aureus: overview and local situation. Ann Acad Med Singapore. 2006;35:479–86.

    PubMed  Google Scholar 

  6. Pasternack MS. Decontamination strategies for MRSA-colonized patients. Curr Infect Dis Rep. 2008;10:385–6.

    Article  PubMed  Google Scholar 

  7. Brehmer F, Haenssle HA, Daeschlein G, et al. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm® VU-2010): results of a monocentric, two-armed, open, prospective, randomized, and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol. 2014. doi:10.1111/jdv.12490.

    PubMed  Google Scholar 

  8. Isbary G, Morfill G, Schmidt HU, et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163:78–82.

    CAS  PubMed  Google Scholar 

  9. Isbary G, Heinlin J, Shimizu T, et al. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol. 2012;167:404–10.

    Article  CAS  PubMed  Google Scholar 

  10. Brandenburg R, Ehlbeck J, Stieber M, et al. Antimicrobial treatment of heat sensitive materials by means of atmospheric pressure Rf-driven plasma jet. Contrib Plasma Phys. 2007;47:72–9.

    Article  CAS  Google Scholar 

  11. Fridman G, Brooks AD, Balasubramanian M, et al. Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Process Polym. 2007;4:370–5.

    Article  CAS  Google Scholar 

  12. Daeschlein G, von Woedtke T, Kindel E, et al. Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in vitro on a simulated wound environment. Plasma Process Polym. 2010;7:224–30.

    Article  CAS  Google Scholar 

  13. Daeschlein G, Scholz S, von Woedtke T, et al. In vitro killing of clinical fungal strains by low-temperature atmospheric-pressure plasma jet. IEEE Trans Plasma Sci. 2011;39:815–21.

    Article  Google Scholar 

  14. Daeschlein G, Napp M, von Podewils S, et al. In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym. 2014;11:175–83.

    Article  CAS  Google Scholar 

  15. Fridman G, Friedman G, Gutsol A, et al. Applied plasma medicine. Plasma Process Polym. 2008;5:503–33.

    Article  CAS  Google Scholar 

  16. Shashurin A, Keidar M, Bronnikov S, et al. Living tissue under treatment of cold plasma atmospheric jet. Appl Phys Lett. 2008;93:181501.

    Article  Google Scholar 

  17. Kalghatgi SU, Fridman G, Fridman A, et al. Non-thermal dielectric barrier discharge plasma treatment of endothelial cells. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:3578–81.

    PubMed  Google Scholar 

  18. Daeschlein G, Darm K, Majunke S, et al. In vivo monitoring of atmospheric pressure plasma jet (APPJ) skin therapy by confocal laserscan microscopy (CLSM). In: Paper presented at the second international conference on plasma medicine, San Antonio, TX, 2009.

  19. Lademann J, Richter H, Alborova A, et al. Risk assessment of the application of a plasma jet in dermatology. J Biomed Opt. 2009;14:054025.

    Article  PubMed  Google Scholar 

  20. Lademann O, Richter H, Patzelt A, et al. Application of a plasma-jet for skin antisepsis: analysis of the thermal action of the plasma by laser scanning microscopy. Laser Phys Lett. 2010;7:458–62.

    Article  Google Scholar 

  21. Daeschlein G, Scholz S, Ahmed R, et al. Cold plasma is well-tolerated and does not disturb skin barrier or reduce skin moisture. J Dtsch Dermatol Ges. 2012;10:509–15.

    PubMed  Google Scholar 

  22. Heinlin J, Morfill G, Landthaler M, et al. Plasma medicine: possible applications in dermatology. J Dtsch Dermatol Ges. 2010;8:968–76.

    PubMed  Google Scholar 

  23. O’Connor N, Cahill O, Daniels S, et al. Cold atmospheric pressure plasma and decontamination. Can it contribute to preventing hospital-acquired infections? J Hosp Infect. 2014;88:59–65.

    Article  PubMed  Google Scholar 

  24. Mai-Prochnow A, Murphy AB, McLean KM, et al. Atmospheric pressure plasmas: infection control and bacterial responses. Int J Antimicrob Agents. 2014;43:508–17.

    Article  CAS  PubMed  Google Scholar 

  25. Bowler PG, Davies BJ. The microbiology of infected and noninfected leg ulcers. Int J Dermatol. 1999;38:573–8.

    Article  CAS  PubMed  Google Scholar 

  26. Meyer V, Kerk N, Mellmann A, et al. MRSA eradication in dermatologic outpatients—theory and practice. J Dtsch Dermatol Ges. 2012;10:186–96.

    PubMed  Google Scholar 

  27. Jockenhöfer F, Gollnick H, Herberger K, et al. Bacteriological pathogen spectrum of chronic leg ulcers: results of a multicenter trial in dermatologic wound care centers differentiated by regions. J Dtsch Dermatol Ges. 2013;11:1057–63.

    PubMed  Google Scholar 

  28. Ulmer M, Lademann J, Patzelt A, et al. New strategies for preoperative skin antisepsis. Skin Pharmacol Physiol. 2014;27:283–92.

    Article  CAS  PubMed  Google Scholar 

  29. Maisch T, Shimizu T, Li YF, et al. Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS ONE. 2012;7:e34610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weltmann KD, Kindel E, Brandenburg R, et al. Atmospheric pressure plasma jet for medical therapy: plasma parameters and risk estimation. Contrib Plasma Phys. 2009;49:631–40.

    Article  Google Scholar 

  31. Kuchenbecker M, Bibinov N, Kaemling A, et al. Characterization of DBD plasma source for biomedical applications. J Phys D Appl Phys. 2009;42:045212.

    Article  Google Scholar 

  32. Helmke A, Hoffmeister D, Mertens N, et al. The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air. New J Phys. 2009;11:115025.

    Article  Google Scholar 

  33. Thomas L, Maillard JY, Lambert RJ, Russell AD. Development of resistance to chlorhexidine diacetate in Pseudomonas aeruginosa and the effect of a “residual” concentration. J Hosp Infect. 2000;46:297–303.

    Article  CAS  PubMed  Google Scholar 

  34. Kawai M, Yamada S, Ishidoshiro A, et al. Cell-wall thickness: possible mechanism of acriflavine resistance in methicillin-resistant Staphylococcus aureus. J Med Microbiol. 2009;58:331–6.

    Article  CAS  PubMed  Google Scholar 

  35. Daeschlein G, Scholz S, Arnold A, et al. In vitro susceptibility of important skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym. 2012;9:380–9.

    Article  CAS  Google Scholar 

  36. Heinlin J, Zimmermann JL, Zeman F, et al. Randomized placebo-controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites. Wound Rep Reg. 2013;21:800–7.

    Article  Google Scholar 

Download references

Acknowledgments

This study was performed within the joint research project “Campus PlasmaMed”, supported by the German Federal Ministry of Education and Research (Grant no. 13N9773 and 13N9779). We thank Prof. Wolfgang Witte and PD Guido Werner for confirmation of laMRSA and caMRSA at the National Reference Center for Staphylococci in Wernigerode, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Napp.

Ethics declarations

Conflict of interest

All authors and co-authors deny any potential conflict of interest (e.g., employment, consulting fees, research contracts, stock ownership, patent licenses, honoraria, advisory affiliations, etc.).

Additional information

Matthias Napp and Georg Daeschlein have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Napp, M., Daeschlein, G., von Podewils, S. et al. In vitro susceptibility of methicillin-resistant and methicillin-susceptible strains of Staphylococcus aureus to two different cold atmospheric plasma sources. Infection 44, 531–537 (2016). https://doi.org/10.1007/s15010-016-0888-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-016-0888-9

Keywords

Navigation