Skip to main content
Log in

Epigenetic determinants of allergy and tolerance

  • Übersicht
  • Published:
Allergo Journal Aims and scope Submit manuscript

Summary

Not only genetics and environmental factors are responsible for the development of allergies. Epigenetic mechanisms – that are master regulators of gene transcription and thus of the accessibility and use of genome information – have been identified as a third power that is key in determining many features of allergy. So far, three epigenetic mechanisms have been identified in humans: histone modification, DNA methylation, and posttranscriptional modification by microRNA (miRNA) or small interfering RNA (siRNA). In recent years, it became clear that epigenetic regulation of gene function does not only play a role in the development of allergy but may also play a key role in the induction of tolerance against allergens, holding the promise to truly heal or prevent atopic diseases in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GSTM1:

Glutathione S-transferase M1

GSTT1:

Glutathione S-transferase T1

H:

Histone

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

miRNA:

MicroRNA

RNAi:

RNA interference

siRNA:

Small interfering RNA

SOTI:

Specific oral tolerance induction

TLR:

Toll-like receptor

Treg:

T regulatory cell

References

  1. Bonnelykke K, Matheson MC, Pers TH, Granell R, Strachan DP, Alves AC et al. Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nat Genet 2013;45:902–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weidinger S, Gieger C, Rodriguez E, Baurecht H, Mempel M, Klopp N et al. Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus. PLoS Genet 2008;4:e1000166

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ellinghaus D, Baurecht H, Esparza-Gordillo J, Rodriguez E, Matanovic A, Marenholz I, et al. High-density genotyping study identifies four new susceptibility loci for atopic dermatitis. Nat Genet 2013;45:808–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 2007;448:470–3

    Article  CAS  PubMed  Google Scholar 

  5. Andiappan AK, Wang de Y, Anantharaman R, Parate PN, Suri BK, Low HQ et al. Genome-wide association study for atopy and allergic rhinitis in a Singapore Chinese population. PLoS One 2011;6:e19719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hong X, Hao K, Ladd-Acosta C, Hansen KD, Tsai HJ, Liu X et al. Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun 2015;6:6304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kabesch M. Gene by environment interactions and the development of asthma and allergy. Toxicol Lett 2006;162:43–8

    Article  CAS  PubMed  Google Scholar 

  8. Riedler J, Braun-Fahrlander C, Eder W, Schreuer M, Waser M, Maisch S et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 2001;358:1129–33

    Article  CAS  PubMed  Google Scholar 

  9. Scholtens S, Postma DS, Moffatt MF, Panasevich S, Granell R, Henderson AJ et al. Novel childhood asthma genes interact with in utero and early-life tobacco smoke exposure. J Allergy Clin Immunol 2014;133:885–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kabesch M, Hoefler C, Carr D, Leupold W, Weiland SK, von Mutius E. Glutathione S transferase deficiency and passive smoking increase childhood asthma. Thorax 2004;59:569–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilliland FD, Li YF, Dubeau L, Berhane K, Avol E, McConnell R et al. Effects of glutathione S-transferase M1, maternal smoking during pregnancy, and environmental tobacco smoke on asthma and wheezing in children. Am J Respir Crit Care Med 2002;166:457–63

    Article  PubMed  Google Scholar 

  12. Kormann MS, Depner M, Hartl D, Klopp N, Illig T, Adamski J et al. Toll-like receptor heterodimer variants protect from childhood asthma. J Allergy Clin Immunol 2008;122:86–92, 92 e1-8

    Article  CAS  PubMed  Google Scholar 

  13. Baldini M, Lohman IC, Halonen M, Erickson RP, Holt PG, Martinez FD. A Polymorphism* in the 5’ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am J Respir Cell Mol Biol 1999;20:976–83

    Article  CAS  PubMed  Google Scholar 

  14. Hinds DA, McMahon G, Kiefer AK, Do CB, Eriksson N, Evans DM et al. A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat Genet 2013;45:907–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simpson A, John SL, Jury F, Niven R, Woodcock A, Ollier WE et al. Endotoxin exposure, CD14, and allergic disease: an interaction between genes and the environment. Am J Respir Crit Care Med 2006;174:386–92

    Article  CAS  PubMed  Google Scholar 

  16. Pandey RC, Michel S, Tesse R, Binia A, Schedel M, Liang L et al. Genetic variation in the Toll-like receptor signaling pathway is associated with childhood asthma. J Allergy Clin Immunol 2013;131:602–5

    Article  CAS  PubMed  Google Scholar 

  17. Tost J. Methods for the Genome-wide and Gene-specific Analysis of DNA Methylation Levels and Patterns. In: Horizon Scientific Press/ Caister Academic Press, Norwich, UK; 2008. p. pp. 63–104

    Google Scholar 

  18. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002;16:6–21

    Article  CAS  PubMed  Google Scholar 

  20. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120:15–20

    Article  CAS  PubMed  Google Scholar 

  21. Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger EP et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 2009;182:259–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee DU, Agarwal S, Rao A. Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity 2002;16:649–60

    Article  CAS  PubMed  Google Scholar 

  23. Liang L, Willis-Owen SA, Laprise C, Wong KC, Davies GA, Hudson TJ, et al. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature 2015;520:670–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rodríguez E, Baurecht H, Wahn AF, Kretschmer A, Hotze M, Zeilinger S et al. An integrated epigenetic and transcriptomic analysis reveals distinct tissue-specific patterns of DNA methylation associated with atopic dermatitis. J Invest Dermatol 2014;134:1873–83

    Article  PubMed  Google Scholar 

  25. Martino D, Joo JE, Sexton-Oates A, Dang T, Allen K, Saffery R, et al. Epigenome-wide association study reveals longitudinally stable DNA methylation differences in CD4+ T cells from children with IgE-mediated food allergy. Epigenetics 2014;9:998–1006

    Article  PubMed  PubMed Central  Google Scholar 

  26. Syed A, Garcia MA, Lyu SC, Bucayu R, Kohli A, Ishida S, et al. Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol 2014;133:500–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. DeWoskin VA, Million RP. The epigenetics pipeline. Nat Rev Drug Discov 2013;12:661–2

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kabesch M.D..

Additional information

Conflict of interest

The author declares that there are no conflicts of interest.

Annotation

This review article is based on a presentation at the German Allergy Congress 2015.

Cite this as

Kabesch M. Epigenetic determinants of allergy and tolerance. Allergo J Int 2016;25:154–9 DOI: 10.1007/s40629-016-0122-4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabesch, M. Epigenetic determinants of allergy and tolerance. Allergo J 25, 32–37 (2016). https://doi.org/10.1007/s15007-016-1170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15007-016-1170-2

Key words

Navigation