Skip to main content
Log in

Comparison of different concentrations of tetracycline-loaded silk fibroin membranes on the guided bone regeneration in the rat calvarial defect model

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

The objective of this study was to evaluate bone regeneration ability using different concentrations of tetracycline (TC) loaded into silk fibroin membranes (SFMs). Prior to animal experiments, MTT assays and alkaline phosphatase (ALP) assays were performed to evaluate the cellular response of each membrane. Critical sized bone defects (8-mm diameter) on rat calvaria were prepared and covered with SFM containing different concentrations of TC:1% TC (TC1), 5% TC (TC5), 10% TC (TC10), and 0% TC (SFM only). The bone regeneration was evaluated by micro-computerized tomography (μ-CT) and histomorphometric analysis at 4 weeks postoperatively. ALP activity was increased in a dose-dependent manner as the applied TC concentrations. By μ-CT analysis, newly formed bone volume in the TC5 group was significantly higher than that in the SFM only group (P<0.001), the TC1 group (P=0.004), and the TC10 group (P=0.012). From histomorphometric analysis, new bone formation was greater in the TC5 group than in the SFM only group (P=0.003) and the TC1 group (P=0.010). There was no significant difference between the TC5 and TC10 group (P>0.05). In conclusion, TC-loaded SFM showed more bone formation than SFM without TC, and the amount of new bone formation was dependent on TC concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Clementini, A Morlupi, L Canullo, et al., Success rate of dental implants inserted in horizontal and vertical guided bone regenerated areas: a systematic review, Int J Oral Maxillofac Surg, 41, 847 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. RE Jung, N Fenner, CH Hämmerle, et al., Long-term outcome of implants placed with guided bone regeneration (GBR) using resorbable and non-resorbable membranes after 12–14 years, Clin Oral Implants Res, 24, 1065 (2013).

    Article  PubMed  Google Scholar 

  3. C Dahlin, A Linde, J Gottlow, et al., Healing of bone defects by guided tissue regeneration, Plast Reconstr Surg, 81, 672 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. BS McAllister, K Haghighat, Bone augmentation techniques, J Periodontol, 78, 377 (2007).

    Article  PubMed  Google Scholar 

  5. M Lorenzoni, C Pertl, RA Polansky, et al., Evaluation of implants placed with barrier membranes, Clin Oral Implants Res, 13, 274 (2002).

    Article  PubMed  Google Scholar 

  6. SA Jovanovic, RK Schenk, M Orsini, et al., Supracrestal bone formation around dental implants: an experimental dog study, Int J Oral Maxillofac Implants, 10, 23 (1995).

    CAS  PubMed  Google Scholar 

  7. NU Zitzmann, R Naef, P Schärer, Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration, Int J Oral Maxillofac Implants, 12, 844 (1997).

    CAS  PubMed  Google Scholar 

  8. H Nowzari, J Slots, Microbiologic and clinical study of polytetrafluoroethylene membranes for guided bone regeneration around implants, Int J Oral Maxillofac Implants, 10, 67 (1995).

    CAS  PubMed  Google Scholar 

  9. KM Chung, LM Salkin, MD Stein, et al., Clinical evaluation of a biodegradable collagen membrane in guided tissue regeneration, J Periodontol, 61, 732 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. SH Park, Kw Lee, TJ Oh, et al., Effect of absorbable membranes on sandwich bone augmentation, Clin Oral Implants Res, 19, 32 (2008).

    PubMed  Google Scholar 

  11. A Kozlovsky, G Aboodi, O Moses, et al., Bio-degradation of a resorbable collagen membrane (Bio-Gide®) applied in a double-layer technique in rats, Clin Oral Implants Res, 20, 1116 (2009).

    Article  PubMed  Google Scholar 

  12. TJ Oh, SJ Meraw, EJ Lee, et al., Comparative analysis of collagen membranes for the treatment of implant dehiscence defects, Clin Oral Implants Res, 14, 80 (2003).

    Article  PubMed  Google Scholar 

  13. Y Cao, B Wang, Biodegradation of silk biomaterials, Int J Mol Sci, 10, 1514 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. J Pérez-Rigueiro, M Elices, J Llorca, et al., Tensile properties of silkworm silk obtained by forced silking, J Appl Polym Sci, 82, 1928 (2001).

    Article  Google Scholar 

  15. GH Altman, F Diaz, C Jakuba, et al., Silk-based biomaterials, Biomaterials, 24, 401 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. M Santin, A Motta, G Freddi, et al., In vitro evaluation of the inflammatory potential of the silk fibroin, J Biomed Mater Res, 46, 382 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. C Li, C Vepari, HJ Jin, et al., Electrospun silk-BMP-2 scaffolds for bone tissue engineering, Biomaterials, 27, 3115 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. H Kweon, JH Yeo, KG Lee, et al., Semi-interpenetrating polymer networks composed of silk fibroin and poly (ethylene glycol) for wound dressing, Biomed Mater, 3, 034115 (2008).

    Article  PubMed  Google Scholar 

  19. J Kim, CH Kim, CH Park, et al., Comparison of methods for the repair of acute tympanic membrane perforations: silk patch vs. paper patch, Wound Repair Regen, 18, 132 (2010).

    Article  PubMed  Google Scholar 

  20. SW Lee, SG Kim, JY Song, et al., Silk Fibroin and 4- Hexylresorcinol Incorporation Membrane for Guided Bone Regeneration, J Craniofac Surg, 24, 1927 (2013).

    Article  PubMed  Google Scholar 

  21. JY Song, SG Kim, JW Lee, et al., Accelerated healing with the use of a silk fibroin membrane for the guided bone regeneration technique, Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 112, e26 (2011).

    Article  Google Scholar 

  22. N Minoura, S Aiba, M Higuchi, et al., Attachment and growth of fibroblast cells on silk fibroin, Biochem Biophys Res Commun, 208, 511 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. MJ Mycek, RA Harvey, R Champe, Lippincott’s illustrated reviews pharmacology, Philadelphia, Lippincott-Raven, (1997).

    Google Scholar 

  24. AR Sánchez, RS Rogers, PJ Sheridan, Tetracycline and other tetracycline-derivative staining of the teeth and oral cavity, Int J Dermatol, 43, 709 (2004).

    Article  PubMed  Google Scholar 

  25. K Kornman, M Newman, D Moore, et al., The influence of supragingival plaque control on clinical and microbial outcomes following the use of antibiotics for the treatment of periodontitis, J Periodontol, 65, 848 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. A Dhem, N Piret, D Fortunati, Tetracyclines, doxycycline and calcified tissues, Scand J Infect Dis Suppl, 42 (1975).

    Google Scholar 

  27. AE Cale, PD Freedman, H Lumerman, Pigmentation of the jawbones and teeth secondary to minocycline hydrochloride therapy, J Periodontol, 59, 112 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. E Eisenberg, Anomalies of the teeth with stains and discolorations, J Prev Dent, 2, 7 (1975).

    CAS  PubMed  Google Scholar 

  29. N Sadaf, B Anoop, B Dakshina, et al., Evaluation of efficacy of tetracycline fibers in conjunction with scaling and root planing in patients with chronic periodontitis, J Indian Soc Periodontol, 16, 392 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  30. R Tavakoli-darestani, A Manafi-rasi, A Kamrani-rad, Dexamethasone-loaded hydroxyapatite enhances bone regeneration in rat calvarial defects, Mol Biol Rep, 41, 423 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. N Donos, L Kostopoulos, T Karring, Alveolar ridge augmentation by combining autogenous mandibular bone grafts and non-resorbable membranes, Clin Oral Implants Res, 13, 185 (2002).

    Article  PubMed  Google Scholar 

  32. SW Lee, YT Park, SG Kim, et al., The Effects of Tetracyclineloaded Silk Fibroin Membrane on Guided Bone Regeneration in a Rabbit Calvarial Defect Model, J Korean Assoc Maxillofac Plast Reconstr Surg, 34, 293 (2012).

    Google Scholar 

  33. A Mombelli, A Feloutzis, U Brägger, et al., Treatment of periimplantitis by local delivery of tetracycline, Clin Oral Implants Res, 12, 287 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. L Golub, N Ramamurthy, T McNamara, et al., Tetracyclines inhibit tissue collagenase activity, J Periodontal Res, 19, 651 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. S Bain, N Ramamurthy, T Impeduglia, et al., Tetracycline prevents cancellous bone loss and maintains near-normal rates of bone formation in streptozotocin diabetic rats, Bone, 21, 147 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. T Sasaki, NS Ramamurthy, LM Golub, Tetracycline administration increases collagen synthesis in osteoblasts of streptozotocin-induced diabetic rats: a quantitative autoradiographic study, Calcif Tissue Int, 50, 411 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. LM Golub, TF McNamara, ME Ryan, et al., Adjunctive treatment with subantimicrobial doses of doxycycline: effects on gingival fluid collagenase activity and attachment loss in adult periodontitis, J Clin Periodontol, 28, 146 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. A Yaffe, A Herman, H Bahar, et al., Combined local application of tetracycline and bisphosphonate reduces alveolar bone resorption in rats, J Periodontol, 74, 1038 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Gon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seok, H., Kim, SG., Kweon, H. et al. Comparison of different concentrations of tetracycline-loaded silk fibroin membranes on the guided bone regeneration in the rat calvarial defect model. Tissue Eng Regen Med 11, 476–482 (2014). https://doi.org/10.1007/s13770-014-9057-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-9057-3

Key words

Navigation