Skip to main content
Log in

Direct labeling of 19F-perfluorocarbon onto multilayered cell sheet for MRI-based non-invasive cell tracking

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Autologous stem cell transplantation for eye diseases is immunologically preferable to avoid allograft rejection. However, the fate of the grafted cells has never been studied. Here, we propose to use 19F-perfluorocarbon magnetic resonance imaging tracer agent, to label cell sheet in vitro. This labeling enables non-invasive visualization of possible migration of grafted cells. Oral mucosal epithelial cells were isolated from rabbit oral mucosal epithelium and were cultivated in a thermo-responsive surface to engineer a multilayer cell sheet. Different concentrations of 19F-perfluorocarbon were added to the cell sheet culture media, one or two times. Cells were analyzed in a 7 T nuclear magnetic resonance to determine the labeling efficiency. We found that 10 mg/mL and two incubations with 19F-perfluorocarbon were the optimal condition for labeling. H&E and immunocytochemistry showed that labeling did not affect the expression of cell sheets specific markers (CK4, CK13, connexin43, E-cadherin). Furthermore, no significant effects were observed on the number of cells and the cell viability, making 19F-perfluorocarbon suitable for cell tracking, with no side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astaldi G, Airò R, Sauli S, Costa G. Cytobiological research in a case of progressive myeloid aplasia. 3. Injection into the medullary cavities of stem cells obtained from autologous lymphocytes activated in culture with phytohemagglutinin]. Boll Soc Ital Biol Sper 1965;41:722–724.

    CAS  PubMed  Google Scholar 

  2. Sorvari T, Toivanen A, Toivanen P. Transplantation of bursal stem cells into cyclophosphamide-treated chicks. Redevelopment of bursal follicles. Transplantation 1974;17:584–592.

    Article  CAS  PubMed  Google Scholar 

  3. Tang C, Russell PJ, Martiniello-Wilks R, Rasko JE, Khatri A. Concise review: nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy? Stem Cells 2010;28:1686–1702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Tseng SC, Chen SY, Shen YC, Chen WL, Hu FR. Critical appraisal of ex vivo expansion of human limbal epithelial stem cells. Curr Mol Med 2010;10:841–850.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Dua HS, Azuara-Blanco A. Limbal stem cells of the corneal epithelium. Surv Ophthalmol 2000;44:415–425.

    Article  CAS  PubMed  Google Scholar 

  6. Bakhtiari P, Djalilian A. Update on limbal stem cell transplantation. Middle East Afr J Ophthalmol 2010;17:9–14.

    PubMed Central  PubMed  Google Scholar 

  7. Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 1997;349:990–993.

    Article  CAS  PubMed  Google Scholar 

  8. Nakamura T, Endo K, Cooper LJ, Fullwood NJ, Tanifuji N, Tsuzuki M, et al. The successful culture and autologous transplantation of rabbit oral mucosal epithelial cells on amniotic membrane. Invest Ophthalmol Vis Sci 2003;44:106–116.

    Article  PubMed  Google Scholar 

  9. Larouche D, Paquet C, Fradette J, Carrier P, Auger FA, Germain L. Regeneration of skin and cornea by tissue engineering. Methods Mol Biol 2009; 482:233–256.

    Article  CAS  PubMed  Google Scholar 

  10. Schwab IR. Cultured corneal epithelia for ocular surface disease. Trans Am Ophthalmol Soc 1999;97:891–986.

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Heskins M, Guillet JE. Solution Properties of Poly(N-isopropylacrylamide). J Macromol Sci Chem 1968;2:1441–1455.

    Article  CAS  Google Scholar 

  12. Kanazawa H, Kashiwase Y, Yamamoto K, Matsushima Y, Kikuchi A, Sakurai Y, et al. Temperature-responsive liquid chromatography. 2. Effects of hydrophobic groups in N-isopropylacrylamide copolymer-modified silica. Anal Chem 1997;69:823–830.

    Article  CAS  PubMed  Google Scholar 

  13. Nishida K, Yamato M, Hayashida Y, Watanabe K, Maeda N, Watanabe H, et al. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation 2004;77:379–385.

    Article  PubMed  Google Scholar 

  14. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 2004;351:1187–1196.

    Article  CAS  PubMed  Google Scholar 

  15. Burillon C, Huot L, Justin V, Nataf S, Chapuis F, Decullier E, et al. Cultured autologous oral mucosal epithelial cell sheet (CAOMECS) transplantation for the treatment of corneal limbal epithelial stem cell deficiency. Invest Ophthalmol Vis Sci 2012;53:1325–1331.

    Article  PubMed  Google Scholar 

  16. Helfer BM, Balducci A, Nelson AD, Janjic JM, Gil RR, Kalinski P, et al. Functional assessment of human dendritic cells labeled for in vivo (19)F magnetic resonance imaging cell tracking. Cytotherapy 2010;12:238–250.

    Article  CAS  PubMed  Google Scholar 

  17. Rostami-Hodjegan A. Physiologically based pharmacokinetics joined with in vitro-in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin Pharmacol Ther 2012;92:50–61.

    Article  CAS  PubMed  Google Scholar 

  18. Vassaux G, Groot-Wassink T. In Vivo Noninvasive Imaging for Gene Therapy. J Biomed Biotechnol 2003;2003:92–101.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Marshall E. Gene therapy death prompts review of adenovirus vector. Science 1999;286:2244–2245.

    Article  CAS  PubMed  Google Scholar 

  20. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003;80:148–158.

    Article  CAS  PubMed  Google Scholar 

  21. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008;118:3132–3142.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCIDX1 patients. J Clin Invest 2008;118:3143–3150.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hollon T. Researchers and regulators reflect on first gene therapy death. Am J Ophthalmol 2000;129:701.

    Article  PubMed  Google Scholar 

  24. Wolters M, Mohades SG, Hackeng TM, Post MJ, Kooi ME, Backes WH. Clinical perspectives of hybrid proton-fluorine magnetic resonance imaging and spectroscopy. Invest Radiol 2013;48:341–350.

    Article  PubMed  Google Scholar 

  25. Liu W, Frank JA. Detection and quantification of magnetically labeled cells by cellular MRI. Eur J Radiol 2009;70:258–264.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Barker N, Bartfeld S, Clevers H. Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 2010;7:656–670.

    Article  CAS  PubMed  Google Scholar 

  27. Bardag-Gorce F, Oliva J, Wood A, Niihara H, Makalinao A, Sabino S, et al. Microarray analysis of oral mucosal epithelial cell sheet. Tissue Eng Regen Med 2013;10:362–370.

    Article  CAS  Google Scholar 

  28. Senoo M, Pinto F, Crum CP, McKeon F. p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell 2007;129:523–536.

    Article  CAS  PubMed  Google Scholar 

  29. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999;398:714–718.

    Article  CAS  PubMed  Google Scholar 

  30. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–674.

    Article  CAS  PubMed  Google Scholar 

  31. Perez-Moreno M, Jamora C, Fuchs E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 2003;112:535–548.

    Article  CAS  PubMed  Google Scholar 

  32. Söhl G, Willecke K. Gap junctions and the connexin protein family. Cardiovasc Res 2004;62:228–232.

    Article  PubMed  Google Scholar 

  33. Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS. Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal 2009;7:4.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Sirnes S, Bruun J, Kolberg M, Kjenseth A, Lind GE, Svindland A, et al. Connexin43 acts as a colorectal cancer tumor suppressor and predicts disease outcome. Int J Cancer 2012;131:570–581.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang YW, Kaneda M, Morita I. The gap junction-independent tumorsuppressing effect of connexin 43. J Biol Chem 2003;278:44852–44856.

    Article  CAS  PubMed  Google Scholar 

  36. Cavallaro U, Christofori G. Multitasking in tumor progression: signaling functions of cell adhesion molecules. Ann N YAcad Sci 2004;1014:58–66.

    Article  CAS  Google Scholar 

  37. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010;10:9–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ness SL, Edelmann W, Jenkins TD, Liedtke W, Rustgi AK, Kucherlapati R. Mouse keratin 4 is necessary for internal epithelial integrity. J Biol Chem 1998;273:23904–23911.

    Article  CAS  PubMed  Google Scholar 

  39. Modo M, Hoehn M, Bulte JW. Cellular MRimaging. Mol Imaging 2005; 4:143–164.

    PubMed  Google Scholar 

  40. Li SC, Tachiki LM, Luo J, Dethlefs BA, Chen Z, Loudon WG. A biological global positioning system: considerations for tracking stem cell behaviors in the whole body. Stem Cell Rev 2010;6:317–333.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Torigian DA, Zaidi H, Kwee TC, Saboury B, Udupa JK, Cho ZH, et al. PET/MR imaging: technical aspects and potential clinical applications. Radiology 2013;267:26–44.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Oliva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliva, J., Bardag-Gorce, F., Wood, A. et al. Direct labeling of 19F-perfluorocarbon onto multilayered cell sheet for MRI-based non-invasive cell tracking. Tissue Eng Regen Med 12, 371–378 (2015). https://doi.org/10.1007/s13770-014-0092-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-0092-x

Keywords

Navigation