, Volume 9, Issue 6, pp 311-319
Date: 30 Nov 2012

Direct comparison of distinct cardiomyogenic induction methodologies in human cardiac-derived c-kit positive progenitor cells

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Cardiac stem/progenitor cells can be differentiated into cardiomyocytes in vitro using several differentiation methodologies. However, the methodology of cardiomyogenic induction in human c-kit positive progenitor cells (hCPCsc-kit+) was not fully demonstrated. Thus, the purpose of our study was to directly evaluate each cardiomyocyte induction system using hCPCsc-kit+. In this study, cardiomyocyte induction methodologies were divided into the following three groups; treatment with dexamethasone, 5-azacytidine, and co-treatment with 5-azacytidine and Transforming Growth Factor Beta 1 (TGF-β1), using different serum concentrations [2% or 10% fetal bovine serum (FBS)]. GATA4 and Nkx2-5, cardiac-specific transcription factors, were expressed in our hCPCsckit+. However, the GATA4 and Nkx2-5 expressions were significantly decreased in 10% FBS/cardiomyogenic induction system (p < 0.01), whereas the GATA4 and Nkx2-5 expressions were preserved in 2% FBS/cardiomyogenic induction system (p > 0.05). GATA4 and Nkx2-5 is crucial roles in cardiac development, thus we considered the low serum conditions more affected in our cardiomyogenic induction system. In addition, c-kit expression decreased significantly during cardiomyogenic differentiation. Importantly, we demonstrated that co-treated with 5-azacytidine and TGF-β1 led to an earlier expression pattern of alpha-sarcomeric actin (α-SA), implying that this cardiomyocyte induction system facilitates early cardiomyocyte differentiation of hCPCsc-kit+. Thus, the present study provides a pivotal cardiomyogenic differentiation methodology using hCPCs c-kit+ for basic or clinical research.

These authors contributed equally to this work