Skip to main content
Log in

Rheological characteristics of mixed kaolin–sand slurry, impacts of pH, temperature, solid concentration and kaolin–sand mixing ratio

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Significant amount of slurry waste is produced from mineral processing plants globally constituting high levels of both kaolin and sand in aqueous suspension. Large quantities of slurry and mine tailings require efficient handling, transportation and storage system. The transportation and treatment of kaolin–sand slurry is dependent on its rheological behaviour which is a function of temperature, total solid concentration and pH. In this study, the effects of total solid concentration, pH and temperature on rheological behaviour of kaolin–sand mixture were investigated. These parameters were varied to analyse the viscosity, yield stress, flow index and shear force requirements of the mixed kaolin–sand suspension as a function of these varying parameters. Experimental rheological investigation conducted on rotational stress-controlled rheometer equipped with Peltier concentric cylinder system showed that the kaolin–sand mixture suspension is shear thickening in nature. The shear stress-rate rheograms for the kaolin–sand suspension can be modelled by the Herschel–Bulkley model with high levels of accuracy for pH range of 4–11, temperature range of 20–50 °C and solid concentration of 5–50 %. Solid concentration of the suspension was found to significantly affect the rheological behaviour of the mixture where higher kaolin–sand slurry concentration resulted in greater viscosity and the trend becoming less predictable for solid concentration greater than 50 % by weight. pH was another factor affecting the rheological behaviour of kaolin–sand slurry. pH of 3 or less resulted in the dramatic increase of viscosity of the suspension possibly due to the isoelectric point of the mixture system found between pH of 3 and 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allouche MH, Botton V, Henry D, Millet S, Usha R, Ben Hadid H (2015) Experimental determination of the viscosity at very low shear rate for shear thinning fluids by electrocapillarity. J Nonnewton Fluid Mech 215:60–69. doi:10.1016/j.jnnfm.2014.11.003

    Article  CAS  Google Scholar 

  • Au P-I, Leong Y-K (2013) Rheological and zeta potential behaviour of kaolin and bentonite composite slurries. Colloids Surf Physicochem Eng Asp 436:530–541. doi:10.1016/j.colsurfa.2013.06.039

    Article  CAS  Google Scholar 

  • Avadiar L, Leong Y-K, Fourie A (2015) Physicochemical behaviors of kaolin slurries with and without cations—contributions of alumina and silica sheets. Colloids Surf Physicochem Eng Asp 468:103–113. doi:10.1016/j.colsurfa.2014.12.019

    Article  CAS  Google Scholar 

  • Baroutian S, Eshtiaghi N, Gapes DJ (2013) Rheology of a primary and secondary sewage sludge mixture: dependency on temperature and solid concentration. Bioresour Technol 140:227–233. doi:10.1016/j.biortech.2013.04.114

    Article  CAS  Google Scholar 

  • Bawa H (2004) Manufacturing processes-II. Tata McGraw-Hill Education

  • Bezerril LM, de Vasconcelos CL, Dantas TNC, Pereira MR, Fonseca JLC (2006) Rheology of chitosan-kaolin dispersions. Colloids Surf Physicochem Eng Asp 287(1–3):24–28. doi:10.1016/j.colsurfa.2006.03.017

    Article  CAS  Google Scholar 

  • Chang S, Ryan M, Gupta R (1993) The effect of pH, ionic strength, and temperature on the rheology and stability of aqueous clay suspensions. Rheol Acta 32(3):263–269

    Article  CAS  Google Scholar 

  • Cheng DC (1980) Viscosity-concentration equations and flow curves for suspensions. Chem Ind 17:403–406

    Google Scholar 

  • Cohen EGD, Verberg R, de Schepper IM (1997) Newtonian viscosity and visco-elastic behavior of concentrated neutral hard-sphere colloidal suspensions. Int J Multiph Flow 23(4):797–807. doi:10.1016/S0301-9322(96)00074-2

    Article  CAS  Google Scholar 

  • Cruz N, Peng Y, Farrokhpay S, Bradshaw D (2013) Interactions of clay minerals in copper–gold flotation: part 1—rheological properties of clay mineral suspensions in the presence of flotation reagents. Miner Eng 50–51:30–37. doi:10.1016/j.mineng.2013.06.003

    Article  Google Scholar 

  • Cunha FO, Torem ML, D’Abreu JC (2006) On the fundamentals of kaolin rheology applied to the paper industry. Miner Eng 19(14):1462–1464. doi:10.1016/j.mineng.2006.03.010

    Article  CAS  Google Scholar 

  • De Noni Jr A, Garcia DE, Hotza D (2002) A modified model for the viscosity of ceramic suspensions. Ceram Int 28(7):731–735. doi:10.1016/S0272-8842(02)00035-4

    Article  Google Scholar 

  • Güngör N (2000) Effect of the adsorption of surfactants on the rheology of na-bentonite slurries. J Appl Polym Sci 75(1):107–110

    Article  Google Scholar 

  • He M, Wang Y, Forssberg E (2004) Slurry rheology in wet ultrafine grinding of industrial minerals: a review. Powder Technol 147(1):94–112

    Article  CAS  Google Scholar 

  • Johnston CT, Premachandra GS (2001) Polarized ATR-FTIR study of smectite in aqueous suspension. Langmuir 17(12):3712–3718

    Article  CAS  Google Scholar 

  • Mosa E, Saleh A, Taha A, El-Molla A (2007) A study on the effect of slurry temperature, slurry ph and particle degradation on rheology and pressure drop of coal water slurries. J Eng Sci 35(5):1297–1311

    Google Scholar 

  • Mular AL, Halbe DN and Barratt DJ (2002) Mineral processing plant design, practice, and control proceedings. SME

  • Mullineux G (2008) Non-linear least squares fitting of coefficients in the herschel–bulkley model. Appl Math Model 32(12):2538–2551. doi:10.1016/j.apm.2007.09.010

    Article  Google Scholar 

  • Ndlovu B, Becker M, Forbes E, Deglon D, Franzidis J-P (2011) The influence of phyllosilicate mineralogy on the rheology of mineral slurries. Miner Eng 24(12):1314–1322. doi:10.1016/j.mineng.2011.05.008

    Article  CAS  Google Scholar 

  • Otsuki A, Barry S, Fornasiero D (2011) Rheological studies of nickel oxide and quartz/hematite mixture systems. Adv Powder Technol 22(4):471–475. doi:10.1016/j.apt.2011.04.004

    Article  CAS  Google Scholar 

  • Pevere A, Guibaud G, van Hullebusch E, Lens P, Baudu M (2006) Viscosity evolution of anaerobic granular sludge. Biochem Eng J 27(3):315–322. doi:10.1016/j.bej.2005.08.008

    Article  CAS  Google Scholar 

  • Pignon F, Magnin A, Piau J-M (1998) Thixotropic behavior of clay dispersions: combinations of scattering and rheometric techniques. J Rheol (1978-present) 42(6):1349–1373

    Article  CAS  Google Scholar 

  • Rao MA (2010) Rheology of fluid and semisolid foods: Principles and applications: Principles and applications. Springer Science & Business Media

  • Rutgers IR (1962) Relative viscosity and concentration. Rheol Acta 2(4):305–348

    Article  CAS  Google Scholar 

  • Sanin FD (2002) Effect of solution physical chemistry on the rheological properties of activated sludge. Water SA 28(2):207–212

    Article  CAS  Google Scholar 

  • Schroth BK and Sposito G (1996) Surface charge properties of kaolinite. In: MRS Proceedings. Cambridge University Press pp 87

  • Senapati PK, Panda D, Parida A (2009) Predicting viscosity of limestone–water slurry. J Miner Mater Charact Eng 8(03):203

    Google Scholar 

  • Shankar P, Teo J, Leong Y-K, Fourie A, Fahey M (2010) Adsorbed phosphate additives for interrogating the nature of interparticles forces in kaolin clay slurries via rheological yield stress. Adv Powder Technol 21(4):380–385. doi:10.1016/j.apt.2010.02.013

    Article  CAS  Google Scholar 

  • Teh EJ, Leong YK, Liu Y, Fourie AB, Fahey M (2009) Differences in the rheology and surface chemistry of kaolin clay slurries: the source of the variations. Chem Eng Sci 64(17):3817–3825. doi:10.1016/j.ces.2009.05.015

    Article  CAS  Google Scholar 

  • Tombácz E, Szekeres M (2006) Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl Clay Sci 34(1–4):105–124. doi:10.1016/j.clay.2006.05.009

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Chemical Engineering of Curtin University, Perth, for providing necessary research infrastructure and equipment/instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Yeneneh.

Additional information

Editorial responsibility: N. Atar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, E., Herbert, C.M., Yeneneh, A.M. et al. Rheological characteristics of mixed kaolin–sand slurry, impacts of pH, temperature, solid concentration and kaolin–sand mixing ratio. Int. J. Environ. Sci. Technol. 13, 2629–2638 (2016). https://doi.org/10.1007/s13762-016-1090-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1090-4

Keywords

Navigation