Skip to main content

Advertisement

Log in

Potentials of the microalgae inoculant in restoration of biological soil crusts to combat desertification

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The world is presently faced to the many calamities, mainly the increased and rapidly developing environmental changes, soil degradation as an example of such environmental problems which is correlated with the destructive effects of the sandstorms. Biological soil crust (BSC), a main component of soil, has various environmental functions including reduction in the erosion by increasing soil stability and providing a sanctuary for the growth of the taxa and vascular plants communities. Destruction of BSC, which naturally can be recovered slowly in a long time processes, contributes to the desertification and other environmental catastrophes. Therefore, accelerating the BSC recovery both the quality and the quantity of the crust development, especially in the desert areas, is of the prime interest. Recent advances in the BSC restoration have provided an immense potential for emulating the natural restoration methods mainly through providing soils with inoculant. This paper reviews the present restoration-based procedures for the biological soil crust restoration practice. The main landmarks are presented and highlighted including strain(s) selection and development, mass biomass production, inoculum preparation, soil inoculation, soil augmentation, nurseries, and crust succession monitoring and control. The review also introduces several successful case studies in the USA and the Republic of China. Thereafter, the paper briefly documents the future directions of the research and technologies. Development of a restoration system through the application of the microalgae inoculant is an encouraging aspect for accelerating the BSC recovery of the arid and semi-arid areas. However, further researches will help to establish and consolidate the potential of the microalgae cells and their application in desertification programs in large scales and in accordance with principles and requirements mandated by economic standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Agricultural importance of algae. Afr J Biotechnol 11:11648–11658

    Article  Google Scholar 

  • Bainbridge DA (2012) Restoration of arid and semi—arid lands. In: Aronson J, van Andel J (eds) Restoration ecology: the new frontier, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Bainbridge DA, Darby MM (2014) Mitigation site soil characteristics and the effects of inoculation, nursery fertilizer practices and irrigation on survival and growth of mesquite (Prosopis glandulosa) in the Coachella Valley, California. Restor Notes 25:1–24

    Google Scholar 

  • Bashan Y, De-Bashan LE (2010) Microbial populations of arid lands and their potential for restoration of deserts. In: Patrice D (ed) Soil biology and agriculture in the tropics. Springer, Berlin, pp 109–137

    Chapter  Google Scholar 

  • Belnap J (1995) Surface disturbances: their role in accelerating desertification. Environ Monit Assess 37:39–57. doi:10.1007/BF00546879

    Article  CAS  Google Scholar 

  • Belnap J, Gillette DA (1997) Disturbance of biological soil crusts: impacts on potential wind erodibility of sandy desert soils in southeastern Utah. L Degrad Dev 8:355–362. doi:10.1002/(SICI)1099-145X(199712)8:4<355:AID-LDR266>3.0.CO;2-H

    Article  Google Scholar 

  • Belnap J, Harper KT (1995) Influence of cryptobiotic soil crusts on elemental content of tissue of two desert seed plants. Arid Soil Res Rehabil 9:107–115. doi:10.1080/15324989509385879

    Article  CAS  Google Scholar 

  • Belnap J, Harper K, Warren S (1993) Surface disturbance of cryptobiotic soil crusts: nitrogenase activity, chlorophyll content, and chlorophyll degradation. Arid Land Res Manag 8:1–8. doi:10.1080/15324989309381373

    Article  Google Scholar 

  • Belnap J, Reynolds R, Reheis M, Phillips SL (2000) What makes the desert bloom? Contribution of dust and crusts to soil fertility on the Colorado Plateau. In: ESA Annual Meeting

  • Belnap J, Kaltenecker JH, Rosentreter R et al (2001) Biological soil crusts: ecology and management: TR–1730-2. US Department of the Interior, Denver, CO

  •  Belnap J, Phillips SL, Duniway M, Reynolds RE (2003) Soil fertility in deserts: a review on the influence of biological soil crusts and the effect of soil surface disturbance on nutrient inputs and losses. In: Alsharhan AS, Wood WW, Goudie A et al (eds) Desertification in the Third Millennium. Swets & Zeitlinger, Lisse, pp 245–252

    Google Scholar 

  • Belnap J, Phillips SL, Witwicki DL, Miller ME (2008) Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts. J Arid Environ 72:1257–1264. doi:10.1016/j.jaridenv.2008.02.019

    Article  Google Scholar 

  • Bertrand I, Ehrhardt F, Alavoine G et al (2014) Regulation of carbon and nitrogen exchange rates in biological soil crusts by intrinsic and land use factors in the Sahel area. Soil Biol Biochem 72:133–144. doi:10.1016/j.soilbio.2014.01.024

    Article  CAS  Google Scholar 

  • Bowker MA (2007) Biological soil crust rehabilitation in theory and practice: an underexploited opportunity. Restor Ecol 15:13–23. doi:10.1111/j.1526-100X.2006.00185.x

    Article  Google Scholar 

  • Bowker MA, Belnap J, Davidson DW, Goldstein H (2006) Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. J Appl Ecol 43:152–163. doi:10.1111/j.1365-2664.2006.01122.x

    Article  Google Scholar 

  • Bowker MA, Belnap J, Bala Chaudhary V, Johnson NC (2008) Revisiting classic water erosion models in drylands: the strong impact of biological soil crusts. Soil Biol Biochem 40:2309–2316. doi:10.1016/j.soilbio.2008.05.008

    Article  CAS  Google Scholar 

  • Briggs AL, Morgan JW (2012) Post-cultivation recovery of biological soil crusts in semi-arid native grasslands, southern Australia. J Arid Environ 77:84–89. doi:10.1016/j.jaridenv.2011.10.002

    Article  Google Scholar 

  • Brostoff WN, Rasoul Sharifi M, Rundel PW (2005) Photosynthesis of cryptobiotic soil crusts in a seasonally inundated system of pans and dunes in the western Mojave Desert, CA: field studies. Flora Morphol Distrib Funct Ecol Plants 200:592–600. doi:10.1016/j.flora.2005.06.008

    Article  Google Scholar 

  • Bu C, Wu S, Xie Y, Zhang X (2013) The study of biological soil crusts: hotspots and prospects. Clean Soil Air Water 41:899–906

    Article  CAS  Google Scholar 

  • Bu C, Wu S, Yang Y, Zheng M (2014) Identification of factors influencing the restoration of cyanobacteria-dominated biological soil crusts. PLoS ONE 9:e90049. doi:10.1371/journal.pone.0090049

    Article  Google Scholar 

  • Büdel B (2003) Biological soil crusts of asia including the Don and Volga Region. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management ecological studies. Springer, Berlin, pp 87–94

    Google Scholar 

  • Büdel B, Colesie C, Green TGA et al (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodivers Conserv 23:1639–1658. doi:10.1007/s10531-014-0645-2

    Article  Google Scholar 

  • Cabala J, Rahmonov O (2004) Cyanophyta and algae as an important component of biological crust from the Pustynia Bledowska dessert (Poland). Polish Bot J 49:93–100

    Google Scholar 

  • Cabala J, Rahmonov O, Jablonska M, Teper E (2011) Soil algal colonization and its ecological role in an environment polluted by past Zn–Pb mining and smelting activity. Water Air Soil Pollut 215:339–348. doi:10.1007/s11270-010-0482-1

    Article  CAS  Google Scholar 

  • Campbell SE, Seeler J, Golubic S (1989) Desert crust formation and soil stabilization. Arid Soil Res Rehabil 3:217–228

    Article  Google Scholar 

  • Cardon ZG, Gray DW, Lewis LA (2008) The green algal underground: evolutionary secrets of desert cells. Bioscience 58:114. doi:10.1641/B580206

    Article  Google Scholar 

  • Chalker-Scott L (2007) Impact of mulches on landscape plants and the environment—a review. J Environ Hortic 25:239–249

    Google Scholar 

  • Clegg JS (2001) Cryptobiosis—a peculiar state of biological organization. Comp Biochem Physiol Part B Biochem Mol Biol 128:613–624. doi:10.1016/S1096-4959(01)00300-1

    Article  CAS  Google Scholar 

  • Durrell LW, Shields LM (1961) Characteristics of soil algae relating to crust formation. Trans Am Microsc Soc 80:73–79

    Article  Google Scholar 

  • Field JP, Belnap J, Breshears DD et al (2010) The ecology of dust. Front Ecol Environ 8:423–430. doi:10.1890/090050

    Article  Google Scholar 

  • Ge H, Xia L, Zhou X et al (2014) Effects of light intensity on components and topographical structures of extracellular polysaccharides from the cyanobacteria Nostoc sp. J Microbiol 52:179–183. doi:10.1007/s12275-014-2720-5

    Article  CAS  Google Scholar 

  • Gómez DA, Aranibar JN, Tabeni S et al (2012) Biological soil crust recovery after long-term grazing exclusion in the Monte Desert (Argentina). Changes in coverage, spatial distribution, and soil nitrogen. Acta Oecol 38:33–40. doi:10.1016/j.actao.2011.09.001

    Article  Google Scholar 

  • Grishkan I, Jia R-L, Kidron GJ, Li X-R (2015) Cultivable microfungal communities inhabiting biological soil crusts in the Tengger Desert, China. Pedosphere 25:351–363

    Article  Google Scholar 

  • Harper KT, Belnap J (2001) The influence of biological soil crusts on mineral uptake by associated vascular plants. J Arid Environ 47:347–357. doi:10.1006/jare.2000.0713

    Article  Google Scholar 

  • Hata T, Tsukamoto M, Inagaki Y et al (2011) Evaluation of multiple soil improvement techniques based on microbial functions. In: Geo-Frontiers 2011. American Society of Civil Engineers, Reston, pp 3945–3955

  • Hu C, Liu Y, Song L, Zhang D (2002) Effect of desert soil algae on the stabilization of fine sands. J Appl Phycol 14:281–292. doi:10.1023/A:1021128530086

    Article  CAS  Google Scholar 

  • Hu C, Zhang D, Huang Z, Liu Y (2003) The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts. Plant Soil 257:97–111. doi:10.1023/A:1026253307432

    Article  CAS  Google Scholar 

  • Hu C, Gao K, Whitton BA (2012) Semi-arid regions and deserts. In: Ecology of cyanobacteria II. Springer, Dordrecht, pp 345–369

  • Kabirov RR, Gaisina LA (2009) Parameters of the productivity of soil algae in terrestrial ecosystems. Eurasian Soil Sci 42:1374–1379. doi:10.1134/S1064229309120072

    Article  Google Scholar 

  • Karsten U, Holzinger A (2014a) Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration. Biodivers Conserv 23:1845–1858. doi:10.1007/s10531-014-0653-2

    Article  Google Scholar 

  • Karsten U, Holzinger A (2014b) Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration. Biodivers Conserv 23:1845–1858

    Article  Google Scholar 

  • Khan K, Pankaj U, Verma SK et al (2015) Bio-inoculants and vermicompost influence on yield, quality of Andrographis paniculata, and soil properties. Ind Crops Prod 70:404–409. doi:10.1016/j.indcrop.2015.03.066

    Article  Google Scholar 

  • Kidron GJ, Vonshak A, Abeliovich A (2008) Recovery rates of microbiotic crusts within a dune ecosystem in the Negev Desert. Geomorphology 100:444–452. doi:10.1016/j.geomorph.2008.01.012

    Article  Google Scholar 

  • Kumar D, Adhikary SP (2015) Diversity, molecular phylogeny, and metabolic activity of cyanobacteria in biological soil crusts from Santiniketan (India). J Appl Phycol 27:339–349. doi:10.1007/s10811-014-0328-0

    Article  CAS  Google Scholar 

  • Lababpour A, Kaviani M, Hosseini N (2016) Identification of prokariotic microalgae from Asaluye area to improve soil and combat desertification. In: 1st International Conference on Dust. Ahwaz, Iran

  • Lan S, Wu L, Zhang D, Hu C (2012) Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environ Earth Sci 65:77–88. doi:10.1007/s12665-011-1066-0

    Article  Google Scholar 

  • Lan S, Wu L, Zhang D, Hu C (2013) Assessing level of development and successional stages in biological soil crusts with biological indicators. Microb Ecol 66:394–403. doi:10.1007/s00248-013-0191-6

    Article  CAS  Google Scholar 

  • Lan S, Wu L, Zhang D, Hu C (2014a) Desiccation provides photosynthetic protection for crust cyanobacteria Microcoleus vaginatus from high temperature. Physiol Plant 152:345–354. doi:10.1111/ppl.12176

    Article  CAS  Google Scholar 

  • Lan S, Zhang Q, Wu L et al (2014b) Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities. Environ Sci Technol 48:307–315. doi:10.1021/es403785j

    Article  CAS  Google Scholar 

  • Li K, Bai Z, Zhang H (2014) Community succession of bacteria and eukaryotes in dune ecosystems of Gurbantünggüt Desert, Northwest China. Extremophiles 19:171–181. doi:10.1007/s00792-014-0696-z

    Article  Google Scholar 

  • Lin CS, Chou TL, Wu JT (2013) Biodiversity of soil algae in the farmlands of mid-Taiwan. Bot Stud. doi:10.1186/1999-3110-54-41

    Google Scholar 

  • Liu Y, Cockell CS, Wang G et al (2008) Control of Lunar and Martian dust–experimental insights from artificial and natural cyanobacterial and algal crusts in the desert of Inner Mongolia, China. Astrobiology 8:75–86. doi:10.1089/ast.2007.0122

    Article  CAS  Google Scholar 

  • Liu G, Yu H, Ma J et al (2015) Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields. Sci Total Environ 518–519:209–216. doi:10.1016/j.scitotenv.2015.02.028

    Article  Google Scholar 

  • Makhalanyane TP, Valverde A, Gunnigle E et al (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 39:203–221. doi:10.1093/femsre/fuu011

    Article  Google Scholar 

  • McKnight DM, Tate CM, Andrews ED et al (2007) Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarctica: a long-term geomorphological experiment. Geomorphology 89:186–204. doi:10.1016/j.geomorph.2006.07.025

    Article  Google Scholar 

  • Meng X, Yuan W (2014) Can biochar couple with algae to deal with desertification? J Sustain Bioenergy Syst 04:194–198. doi:10.4236/jsbs.2014.43018

    Article  Google Scholar 

  • Mengual C, Roldán A, Caravaca F, Schoebitz M (2014a) Advantages of inoculation with immobilized rhizobacteria versus amendment with olive-mill waste in the afforestation of a semiarid area with Pinus halepensis Mill. Ecol Eng 73:1–8. doi:10.1016/j.ecoleng.2014.09.007

    Article  Google Scholar 

  • Mengual C, Schoebitz M, Azcón R, Roldán A (2014b) Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions. J Environ Manag 134:1–7. doi:10.1016/j.jenvman.2014.01.008

    Article  CAS  Google Scholar 

  • Meyer F, Bang S, Min S et al (2011) Microbiologically-induced soil stabilization: application of Sporosarcina pasteurii for fugitive dust control. Geo-Frontiers 2011:4002–4011

    Google Scholar 

  • Mor-Mussery A, Leu S, Budovsky A, Lensky I (2015) Plant-soil interactions and desertification: a case study in the northern Negev, Israel. Arid Land Res Manag 29:85–97. doi:10.1080/15324982.2014.933455

    Article  Google Scholar 

  • Paulo EM, Boffo EF, Branco A et al (2012) Production, extraction and characterization of exopolysaccharides produced by the native Leuconostoc pseudomesenteroides R2 strain. An Acad Bras Cienc 84:495–508. doi:10.1590/S0001-37652012000200018

    Article  CAS  Google Scholar 

  • Pelizer LH, de Moraes IO (2014) A method to estimate the biomass of Spirulina platensis cultivated on a solid medium. Braz J Microbiol 45:933–936. doi:10.1590/S1517-83822014000300024

    Article  CAS  Google Scholar 

  • Pietrasiak N, Regus JU, Johansen JR et al (2013) Biological soil crust community types differ in key ecological functions. Soil Biol Biochem 65:168–171. doi:10.1016/j.soilbio.2013.05.011

    Article  CAS  Google Scholar 

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562. doi:10.1038/nrmicro2831

    Article  CAS  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  Google Scholar 

  • Raanan H, Oren N, Treves H et al (2015) Simulated soil crust conditions in a chamber system provide new insights on cyanobacterial acclimation to desiccation. Environ Microbiol. doi:10.1111/1462-2920.12998

    Google Scholar 

  • Raggio J, Pintado A, Vivas M et al (2014) Continuous chlorophyll fluorescence, gas exchange and microclimate monitoring in a natural soil crust habitat in Tabernas badlands, Almería, Spain: progressing towards a model to understand productivity. Biodivers Conserv 23:1809–1826. doi:10.1007/s10531-014-0692-8

    Article  Google Scholar 

  • Rahmonov O, Piatek J (2007) Sand colonization and initiation of soil development by cyanobacteria and algae. Ekológia (Bratislava) 26:52

    CAS  Google Scholar 

  • Rao B-Q, Liu Y-D, Hu C-X et al (2009) The technology of man-made algal crust and its applications in control of desertification. Acta Hydrobiol Sin 33:756

    Article  Google Scholar 

  • Reynolds JF, Smith DMS, Lambin EF et al (2007) Global desertification: building a science for dryland development. Science 316(80):847–851. doi:10.1126/science.1131634

    Article  CAS  Google Scholar 

  • Rosentreter R, Bowker M, Belnap J (2007) A field guide to biological soil crusts of western U.S. drylands: common lichens and bryophytes. U.S. Government Printing, Denver

    Google Scholar 

  • Ruby-Pipeline-LLC (2012) Long-term monitoring plan for the Ruby Pipeline Project. http://www.blm.gov/style/medialib/blm/nv/nepa/monitoring_reports/2012_year_1_monitoring.Par.54978.File.dat/Appendix_B_Long-Term_Monitoring_Plan.pdf

  • Schoebitz M, Mengual C, Roldán A (2014) Combined effects of clay immobilized Azospirillum brasilense and Pantoea dispersa and organic olive residue on plant performance and soil properties in the revegetation of a semiarid area. Sci Total Environ 466–467:67–73. doi:10.1016/j.scitotenv.2013.07.012

    Article  Google Scholar 

  • Sears JT, Prithiviraj B (2012) Seeding of large areas with biological soil crust starter culture formulations: using an aircraft disbursable granulate to increase stability, fertility and CO2 sequestration on a landscape scale. In: 2012 IEEE Green Technologies Conference. IEEE, pp 1–3

  • Soil Technologies Corp. (2015) MICROP-SL. https://www.soiltechcorp.com/search/results/?keywords=microp. Accessed 27 July 2015

  • St. Clair LL, Johansen JR (1986) Rapid stabilization of fire-disturbed sites using a soil crust slurry: inoculation studies. Reclam Reveegtation Res 4:261–269

    Google Scholar 

  • Tan N, Jia SR, Han PP et al (2012) The open culture of Nostoc flagelliforme with a 25 L open pond. Adv Mater Res 554–556:1009–1012. doi:10.4028/www.scientific.net/AMR.554-556.1009

    Article  Google Scholar 

  • Tracy EJ, South GR (1989) Composition and seasonality of micro-algal mats on a salt marsh in New Brunswick, Canada. Br Phycol J 24:285–291. doi:10.1080/00071618900650301

    Article  Google Scholar 

  • UNCCD (2015) Climate change and land degradation: bridging knowledge and stakeholders. In: UNCCD 3rd Scientific Conference. UNCCD, Cancun, Mexico

  • Wang X, Chen F, Dong Z (2006) The relative role of climatic and human factors in desertification in semiarid China. Glob Environ Chang 16:48–57. doi:10.1016/j.gloenvcha.2005.06.006

    Article  Google Scholar 

  • Wang W, Yang C, Tang D et al (2007) Effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts under experimental conditions. Sci China Ser C Life Sci 50:530–534. doi:10.1007/s11427-007-0051-z

    Article  Google Scholar 

  • Wang W, Liu Y, Li D et al (2009) Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol Biochem 41:926–929. doi:10.1016/j.soilbio.2008.07.001

    Article  CAS  Google Scholar 

  • Wu L, Lan S, Zhang D, Hu C (2011) Small-scale vertical distribution of algae and structure of lichen soil crusts. Microb Ecol 62:715–724. doi:10.1007/s00248-011-9828-5

    Article  Google Scholar 

  • Xiao B, Zhao Y, Wang Q, Li C (2015) Development of artificial moss-dominated biological soil crusts and their effects on runoff and soil water content in a semi-arid environment. J Arid Environ 117:75–83. doi:10.1016/j.jaridenv.2015.02.017

    Article  Google Scholar 

  • Xie Z, Liu Y, Hu C et al (2007) Relationships between the biomass of algal crusts in fields and their compressive strength. Soil Biol Biochem 39:567–572. doi:10.1016/j.soilbio.2006.09.004

    Article  CAS  Google Scholar 

  • Zhao H-L, Guo Y-R, Zhou R-L, Drake S (2010) Biological soil crust and surface soil properties in different vegetation types of Horqin Sand Land, China. CATENA 82:70–76. doi:10.1016/j.catena.2010.05.002

    Article  CAS  Google Scholar 

  • Zheng Y, Xu M, Zhao J et al (2011) Effects of inoculated Microcoleus vaginatus on the structure and function of biological soil crusts of desert. Biol Fertil Soils 47:473–480. doi:10.1007/s00374-010-0521-5

    Article  Google Scholar 

Download references

Acknowledgments

Support of the National Institute of Genetic Engineering and Biotechnology of IRAN is gratefully acknowledged (940801-I-535).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lababpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lababpour, A. Potentials of the microalgae inoculant in restoration of biological soil crusts to combat desertification. Int. J. Environ. Sci. Technol. 13, 2521–2532 (2016). https://doi.org/10.1007/s13762-016-1074-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1074-4

Keywords

Navigation