Skip to main content
Log in

Bacteria-immobilized electrospun fibrous polymeric webs for hexavalent chromium remediation in water

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The development of hexavalent chromium remediating fibrous biocomposite mats through the immobilization of a hexavalent chromium reducing bacterial strain, Morganella morganii STB5, on the surfaces of electrospun polystyrene and polysulfone webs is described. The bacteria-immobilized biocomposite webs have shown removal yields of 93.60 and 93.79 % for 10 mg/L, 99.47 and 90.78 % for 15 mg/L and 70.41 and 68.27 % for 25 mg/L of initial hexavalent chromium within 72 h, respectively, and could be reused for at least five cycles. Storage test results indicate that the biocomposite mats can be stored without losing their bioremoval capacities. Scanning electron microscopy images of the biocomposite webs demonstrate that biofilms of M. morganii STB5 adhere strongly to the fibrous polymeric surfaces and are retained after repeated cycles of use. Overall, the results suggest that reusable bacteria-immobilized fibrous biocomposite webs might be applicable for continuous hexavalent chromium remediation in water systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Gheethi AAS, Norli I, Lalung J, Azlan AM, Farehah ZAN, Kadir MOA (2014) Biosorption of heavy metals and cephalexin from secondary effluents by tolerant bacteria. Clean Technol Environ Policy 16(1):137–148

    Article  CAS  Google Scholar 

  • Bankar AV, Kumar AR, Zinjarde SS (2009) Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. J Hazard Mater 170:487–494

    Article  CAS  Google Scholar 

  • Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40:7397–7407

    Article  CAS  Google Scholar 

  • Chauhan D, Durivedi J, Sankaramakrishnan N (2014) Novel chitosan/PVA/zerovalent iron biopolymeric nanofibers with enhanced arsenic removal applications. Environ Sci Pollut Res 21:9430–9442

    Article  CAS  Google Scholar 

  • Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K (2007) Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater 146:270–277

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  Google Scholar 

  • Ergul-Ulger Z, Ozkan AD, Tunca E, Atasagun S, Tekinay T (2014) Chromium(VI) biosorption and bioaccumulation by live and acid-modified biomass of a novel Morganella morganii isolate. Sep Sci Technol 49:907–914

    Article  CAS  Google Scholar 

  • Eroglu E, Agarwal V, Bradshaw M, Chen X, Smith SM, Raston CL, Iyera KS (2012) Nitrate removal from liquid effluents using microalgae immobilized on chitosan nanofiber mats. Green Chem 14:2682–2685

    Article  CAS  Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7:415–432

    Article  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232

    Article  CAS  Google Scholar 

  • Giaouris E, Chapot-Chartier MP, Briandet R (2009) Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties. Int J Food Microbiol 131:2–9

    Article  CAS  Google Scholar 

  • Gopal R, Kaur S, Feng CY, Chan C, Ramakrishna S, Tabe S, Matsuura T (2007) Electrospun nanofibrous polysulfone membranes as pre-filters: particulate removal. J Membr Sci 289:210–219

    Article  CAS  Google Scholar 

  • Greif D, Wesner D, Regtmeier J, Anselmetti D (2010) High resolution imaging of surface patterns of single bacterial cells. Ultramicroscopy 110:1290–1296

    Article  CAS  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  Google Scholar 

  • Kilic NK, Donmez G (2008) Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., and Ochrobactrum sp. J Hazard Mater 154:1019–1024

    Article  CAS  Google Scholar 

  • Klein S, Kuhn J, Avrahami R, Tarre S, Beliavski M, Green M, Zussman E (2009) Encapsulation of bacterial cells in electrospun microtubes. Biomacromolecules 10:1751–1756

    Article  CAS  Google Scholar 

  • Klein S, Avrahami R, Zussman E, Beliavski M, Tarre S, Green M (2012) Encapsulation of Pseudomonas sp. ADP cells in electrospun microtubes for atrazine bioremediation. J Ind Microbiol Biotechnol 39:1605–1613

    Article  CAS  Google Scholar 

  • Kochkodan V, Tsarenko S, Potapchenko N, Kosinova V, Goncharuk V (2008) Adhesion of microorganisms to polymer membranes: a photobactericidal effect of surface treatment with TiO2. Desalination 220:380–385

    Article  CAS  Google Scholar 

  • Liu Y, Gan L, Chen Z, Megharaj M, Naidu R (2012) Removal of nitrate using Paracoccus sp. YF1 immobilized on bamboo carbon. J Hazard Mater 229–230:419–425

    Article  Google Scholar 

  • Lugo-Lugo V, Barrera-Díaz C, Bilyeub B, Balderas-Hernández P, Ureña-Nuñez F, Sánchez-Mendieta V (2010) Cr(VI) reduction in wastewater using a bimetallic galvanic reactor. J Hazard Mater 176:418–425

    Article  CAS  Google Scholar 

  • Mishra S, Doble M (2008) Novel chromium tolerant microorganisms: isolation, characterization and their biosorption capacity. Ecotoxicol Environ Saf 71:874–879

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  • Pinchuk L (1989) US Patent 4,882,148

  • Quintelas C, Fernandes B, Castro J, Figueiredo H, Tavares T (2008) Biosorption of Cr(VI) by three different bacterial species supported on granular activated carbon: a comparative study. J Hazard Mater 153:799–809

    Article  CAS  Google Scholar 

  • Quintelas C, Fonseca B, Silva B, Figueiredo H, Tavares T (2009) Treatment of chromium(VI) solutions in a pilot-scale bioreactor through a biofilm of Arthrobacter viscosus supported on GAC. Bioresour Technol 100:220–226

    Article  CAS  Google Scholar 

  • Roso M, Sundarrajan S, Plizska D, Ramakrishna S, Modesti M (2008) Multifunctional membranes based on spinning technologies: the synergy of nanofibers and nanoparticles. Nanotechnology 19:285707

    Article  Google Scholar 

  • San NO, Celebioglu A, Tumtas Y, Uyar T, Tekinay T (2014) Reusable bacteria immobilized electrospun nanofibrous webs for decolorization of methylene blue dye in wastewater treatment. RSC Adv 4:32249–32255

    Article  CAS  Google Scholar 

  • San-Keskin NO, Celebioglu A, Uyar T, Tekinay T (2015a) Microalgae immobilized nanofibrous web for removal of reactive dyes from wastewater. Ind Eng Chem Res 54:5802–5809

    Article  CAS  Google Scholar 

  • San-Keskin NO, Celebioglu A, Sarioglu OF, Ozkan AD, Uyar T, Tekinay T (2015b) Removal of a reactive dye and hexavalent chromium by a reusable bacteria attached electrospun nanofibrous web. RSC Adv 5:86867–86874

    Article  CAS  Google Scholar 

  • Sarioglu OF, Yasa O, Celebioglu A, Uyar T, Tekinay T (2013) Efficient ammonium removal from aquatic environments by Acinetobacter calcoaceticus STB1 immobilized on an electrospun cellulose acetate nanofibrous web. Green Chem 15:2566–2572

    Article  CAS  Google Scholar 

  • Sarioglu OF, Celebioglu A, Tekinay T, Uyar T (2015) Evaluation of contact time and fiber morphology on bacterial immobilization for development of novel surfactant degrading nanofibrous webs. RSC Adv 5:102750–102758

    Article  CAS  Google Scholar 

  • Tinoco I, Sauer K, Wang JC (1996) Physical chemistry: principles and applications in biological sciences. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • US EPA (1992) Chromium, Hexavalent (Colorimetric). United States Environmental Protection Agency. http://www.epa.gov/solidwaste/hazard/testmethods/sw846/pdfs/7196a.pdf. Accessed 05 Oct 2015

  • US EPA (2010) Chromium-6 in drinking water. United States Environmental Protection Agency. http://water.epa.gov/drink/contaminants/basicinformation/upload/Chromium6inDrinkingWater.pdf. Accessed 05 Oct 2015

  • Uyar T, Havelund R, Nur Y, Hacaloglu J, Besenbacher F, Kingshott P (2009) Molecular filters based on cyclodextrin functionalized electrospun fibers. J Membr Sci 332:129–137

    Article  CAS  Google Scholar 

  • Uyar T, Havelund R, Hacaloglu J, Besenbacher F, Kingshott P (2010) Functional electrospun polystyrene nanofibers incorporating alpha, beta and gamma cyclodextrins: comparison of molecular filter performance. ACS Nano 4:5121–5130

    Article  CAS  Google Scholar 

  • Wagner H, Siebert T, Ellerby DJ, Marsh RL, Blickhan R (2005) ISOFIT: a model-based method to measure muscle–tendon properties simultaneously. Biomech Model Mechanobiol 4:10–19

    Article  CAS  Google Scholar 

  • Xu R, Si Y, Li F, Zhang B (2015) Enzymatic removal of paracetamol from aqueous phase: horseradish peroxidase immobilized on nanofibrous membranes. Environ Sci Pollut Res 22:3838–3846

    Article  CAS  Google Scholar 

  • Yang A, He M, Wang G (2009) Removal of toxic chromate using free and immobilized Cr(VI)-reducing bacterial cells of Intrasporangium sp. Q5-1. World J Microbiol Biotechnol 25:1579–1587

    Article  CAS  Google Scholar 

  • Zahoor A, Rehman A (2009) Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci 21:814–820

    Article  Google Scholar 

Download references

Acknowledgments

The Scientific and Technological Research Council of Turkey (TUBITAK, project #114Y264) is acknowledged for funding the research. Dr. Uyar acknowledges The Turkish Academy of Sciences—Outstanding Young Scientists Award Program (TUBA-GEBIP) for the partial funding of the research. A. Celebioglu acknowledges TUBITAK project #113Y348 for postdoctoral fellowship. O. F. Sarioglu acknowledges TUBITAK BIDEB (2211-C) for National Ph.D. Scholarship. The authors thank Dr. N. Oya San-Keskin for technical assistance and Pelin Toren for Contact Angle measurements and Alper Devrim Ozkan for his fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Uyar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarioglu, O.F., Celebioglu, A., Tekinay, T. et al. Bacteria-immobilized electrospun fibrous polymeric webs for hexavalent chromium remediation in water. Int. J. Environ. Sci. Technol. 13, 2057–2066 (2016). https://doi.org/10.1007/s13762-016-1033-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1033-0

Keywords

Navigation