Skip to main content
Log in

Removal of anthropogenic lead pollutions by a potent Bacillus species AS2 isolated from geogenic contaminated site

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A total of 422 bacterial isolates were obtained from the lead (Pb) ore in north-eastern Iran. The Pb tolerances of these strains were studied using microbroth serial dilution approach and 35 strains could grow up to 3250 ppm Pb concentration. Of these strains, 10 of them represented qualitatively high levels of Pb adsorption and were selected for quantitative studies. Strain AS2 which is phylogenetically related to genus Bacillus showed the highest level of Pb remediation. The effects of different factors, including pH, initial Pb concentration, temperature and inoculum size, were studied on the remediation process. Pb remediation capacity was reached at 74.5 mg/g (99.5 % of initial Pb) at pH 4.5, temperature 30 °C, inoculum size 1.0 % (v/v) and an initial Pb concentration of 500 ppm after 24 h. Pb desorption capacity of strain was 66 %. The novel isolate could remove 98 % of Pb from the contaminated industrial wastes after 24 h. Pb uptaking to the cell surface was proven using scanning electron microscopic micrograph and energy-dispersive X-ray spectroscopy analysis. Most Pb removal efficiency was observed in the active cell culture as compared to the inactive cell and extracellular polymeric substances. The novel strain represents a good candidate for removal of environmental anthropogenic Pb pollutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Batta N, Subudhi S, Lal B, Devi A (2013) Isolation of a lead tolerant novel bacterial species, Achromobacter sp. TL-3: assessment of bioflocculant activity. Indian J Exp Biol 51:1004–1011

    CAS  Google Scholar 

  • Beveridge TJ, Fyfe WS (1985) Metal fixation by bacterial cell walls. Can J Earth Sci 22:1892–1898

    Article  Google Scholar 

  • Bhakta JN, Munekage Y, Ohnishi K, Jana BB (2012) Isolation and identification of cadmium- and lead-resistant lactic acid bacteria for application as metal removing probiotic. Int J Environ Sci Technol 9:433–440

    Article  CAS  Google Scholar 

  • Cabuk A, Akar T, Tunali S, Tabak O (2006) Biosorption characteristics of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb(II). J Hazard Mater 136:317–323

    Article  CAS  Google Scholar 

  • Chen C, Wang J (2007) Response of Saccharomyces cerevisiae to lead ion stress. Appl Microbiol Biotechnol 74:683–687

    Article  CAS  Google Scholar 

  • Chen QY, Luo Z, Hills C, Xue G, Tyrer M (2009) Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide. Water Res 43:2605–2614

    Article  CAS  Google Scholar 

  • Deng LP, Su YY, Su H, Wang XT, Zhu XB (2007) Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143:220–225

    Article  CAS  Google Scholar 

  • Gabr RM, Hassan SHA, Shoreit AAM (2008) Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int Biodeterior Biodegrad 62:195–203

    Article  CAS  Google Scholar 

  • Halttunen T, Salminen S, Tahvonen R (2007) Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Int J Food Microbiol 114:30–35

    Article  CAS  Google Scholar 

  • Hasnain S, Yasmin S, Yasmin A (1993) The effects of lead resistant Pseudomonads on the growth of Triticum aestivum seedlings under lead stress. Environ Pollut 81:179–184

    Article  CAS  Google Scholar 

  • Hu Q, Qi HY, Zeng JH, Zhang HX (2007) Bacterial diversity in soils around a lead and zinc mine. J Environ Sci 19:74–79

    Article  CAS  Google Scholar 

  • Ismail Z, Salim K, Othman SZ, Ramli AH, Shirazi SM, Karim R, Khoo SY (2013) Determining and comparing the levels of heavy metal concentrations in two selected urban river water. Measurement 46:4135–4144

    Article  Google Scholar 

  • Jarosławiecka A, Piotrowska-Seget Z (2014) Lead resistance in micro-organisms. Microbiology 160:12–25

    Article  Google Scholar 

  • Johnson KJ, Ams DA, Wedel AN, Szymanowski JES, Weber DL, Schneegurt MA, Fein JB (2007) The impact of metabolic state on Cd adsorption onto bacterial cells. Geobiology 5:211–218

    Article  CAS  Google Scholar 

  • Kabbashi NA, Atieh MA, Al-Mamun A, Mirghami MES, Alam MDZ, Yahya N (2009) Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. J Environ Sci 21:539–544

    Article  CAS  Google Scholar 

  • Landaburu-Aguirre J, García V, Pongrácz E, Keiski RL (2009) The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments. Desalination 240:262–269

    Article  CAS  Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959

    Article  CAS  Google Scholar 

  • Leung WC, Chua H, Lo W (2001) Biosorption of heavy metals by bacteria isolated from activated sludge. Appl Biochem Biotechnol 91:171–184

    Article  Google Scholar 

  • Li L, Liu H, Shi Z, Wang G (2013) Sphingobium cupriresistens sp. nov., a copper-resistant bacterium isolated from copper mine soil, and emended description of the genus Sphingobium. Int J Syst Evol Microbiol 63:604–609

    Article  CAS  Google Scholar 

  • Macek T, Mackova M (2011) Potential of biosorption technology. In: Kotrba P, Mackova M, Macek T (eds) Microbial biosorption of metals. Springer, London, pp 1–17

    Google Scholar 

  • Maiti SK (2004) Handbook of Methods in Environmental Studies Vol. 1: Water and Wastewater Analysis, 2nd edn. ABD Publishers

  • Naik MM, Dubey SK (2011) Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Curr Microbiol 62:409–414

    Article  CAS  Google Scholar 

  • Naseem R, Tahir SS (2001) Removal of Pb (ii) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Res 16:3982–3986

    Article  Google Scholar 

  • Pérez MPJA, García-Ribera R, Quesada T, Aguilera M, Ramos-Cormenzana A, Monteoliva-Sánchez M (2008) Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World J Microbiol Biotechnol 24:2699–2704

    Article  Google Scholar 

  • Piotrowska-Seget Z, Cycoń M, Kozdrój J (2005) Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl Soil Ecol 28:237–246

    Article  Google Scholar 

  • Pümpel T, Pernfub B, Pigher B, Diels L, Schinner F (1995) A rapid screening method for the isolation of metal-accumulating microorganisms. J Ind Microbiol 14:213–217

    Article  Google Scholar 

  • Roane TM, Kellogg ST (1996) Characterization of bacterial communities in heavy metal contaminated soils. Can J Microbiol 42:593–603

    Article  CAS  Google Scholar 

  • Saad B, Pok FW, Sujari ANA, Saleh MI (1998) Analysis of anions and cations in drinking water samples by Capillary Ion Analysis. Food Chem 61:249–254

    Article  CAS  Google Scholar 

  • Saǧ Y, Özer D, Kutsal T (1995) A comparative study of the biosorption of lead (II) ions to Z. ramigera and R. arrhizus. Process Biochem 30:169–174

    Article  Google Scholar 

  • So NW, Rho JY, Lee SY, Hancock IC, Kim JH (2001) A lead-absorbing protein with superoxide dismutase activity from Streptomyces subrutilus. FEMS Microbiol Lett 194:93–98

    Article  CAS  Google Scholar 

  • Sparks DL (2005) Toxic metals in the environment: the role of surfaces. Elements 1:193–197

    Article  CAS  Google Scholar 

  • Sun F, Shao Z (2007) Biosorption and bioaccumulation of lead by Penicillium sp. Psf-2 isolated from the deep sea sediment of the Pacific Ocean. Extremophiles 11:853–858

    Article  Google Scholar 

  • Trajanovska S, Britz ML, Bhave M (1997) Detection of heavy metal ion resistance genes in gram-positive and gram-negative bacteria isolated from a lead-contaminated site. Biodegradation 8:113–124

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  • Zanardini E, Andreoni V, Borina S, Cappitellia F, Daffonchio D, Talottaa P, Sorlinia C, Ranallib G, Brunic S, Cariatic F (1997) Lead-resistant microorganisms from red stains of marble of the Certosa of Pavia, Italy and use of nucleic acid based techniques for their detection. Int Biodeter Biodegrad 40:171–182

    Article  CAS  Google Scholar 

  • Zhang J, Wang R, Jiang P, Liu Z (2002) Production of an exopolysaccharide bioflocculant by Sorangium cellulosum. Lett Appl Microbiol 34:178–181

    Article  Google Scholar 

  • Zhang Q, Pan B, Zhang W, Pan B, Lv L, Wang X, Wu J, Tao X (2009) Selective removal of Pb(II), Cd(II), and Zn(II) ions from waters by an inorganic exchanger Zr(HPO3S)2. J Hazard Mater 170:824–828

    Article  CAS  Google Scholar 

  • Zhu H, Guo J, Chen M, Feng G, Yao Q (2012) Burkholderia dabaoshanensis sp. nov., a heavy-metal-tolerant bacteria isolated from Dabaoshan mining area soil in China. PLoS One 7:1–6

    Google Scholar 

Download references

Acknowledgments

This work was supported by grant from Ferdowsi University of Mashhad (23889/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Makhdoumi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cephidian, A., Makhdoumi, A., Mashreghi, M. et al. Removal of anthropogenic lead pollutions by a potent Bacillus species AS2 isolated from geogenic contaminated site. Int. J. Environ. Sci. Technol. 13, 2135–2142 (2016). https://doi.org/10.1007/s13762-016-1023-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1023-2

Keywords

Navigation