Skip to main content
Log in

Understanding the simultaneous biodegradation of thiocyanate and salicylic acid by Paracoccus thiocyanatus and Pseudomonas putida

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Phenolic and cyanide compounds, which frequently appear mixed in several industrial effluents, are difficult to be biodegraded under certain conditions. In this work, salicylic acid (SA) and thiocyanate (SCN) were selected as model pollutants of these two families and experiments of biodegradation with specific microorganisms were developed. It was found that the best well-known bacteria able to biodegrade each one of these pollutants, Pseudomonas putida for SA and Paracoccus thiocyanatus for SCN, do not biodegrade the other one. Therefore, the co-culture was required, producing interesting interaction phenomena. When both pollutants were simultaneously biodegraded, a commensalism effect was observed improving SCN removal. Experimental data for SCN and SA removals were successfully fitted to zero reaction kinetic orders, with induction time in the case of SCN, and substrate dependences were fitted to Tessier models. A flow cytometry method was developed and employed to obtain the evolution of the viable, damaged and dead cells for different substrate concentration and the degree of agglomeration in the co-culture experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarry SE, Solomon BO (2008) Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence. Int J Environ Sci Technol 5:223–232. doi:10.1007/BF03326016

    Article  CAS  Google Scholar 

  • Agarry SE, Audu TOK, Solomon BO (2009) Substrate inhibition kinetics of phenol degradation by Pseudomonas fluorescence from steady state and wash-out data. Int J Environ Sci Technol 6:443–450. doi:10.1007/BF03326083

    Article  CAS  Google Scholar 

  • Alonso S, Rendueles M, Díaz M (2012) Physiological heterogeneity of Pseudomonas taetrolens during lactobionic acid production. Appl Microbiol Biotechnol 96:1465–1477. doi:10.1007/s00253-012-4254-2

    Article  CAS  Google Scholar 

  • Arutchelvan V, Kanakasabai V, Nagarajan S, Muralikrishnan V (2005) Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater. J Hazard Mater 127:238–243. doi:10.1016/j.jhazmat.2005.04.043

    Article  CAS  Google Scholar 

  • Banerjee G (1996) Phenol- and thiocyanate-based wastewater treatment in RBC reactor. J Environ Eng 122:941–948

    Article  CAS  Google Scholar 

  • Cai S, Li X, Cai T, He J (2013) Degradation of piperazine by Paracoccus sp. TOH isolated from activated sludge. Bioresour Technol 130:536–542. doi:10.1016/j.biortech.2012.12.095

    Article  CAS  Google Scholar 

  • Chaudhari A, Kodam K (2010) Biodegradation of thiocyanate using co-culture of Klebsiella pneumoniae and Ralstonia sp. Appl Microbiol Biotechnol 85:1167–1174. doi:10.1007/s00253-009-2299-7

    Article  CAS  Google Scholar 

  • Collado S, Laca A, Díaz M (2009) Wet oxidation of thiocyanate under different pH conditions: kinetics and mechanistic analysis, vol 22. American Chemical Society, Washington

    Google Scholar 

  • Collado S, Garrido L, Laca A, Díaz M (2010) Wet oxidation of salicylic acid solutions. Environ Sci Technol 44:8629–8635

    Article  CAS  Google Scholar 

  • Combarros RG, Rosas I, Lavín AG, Rendueles M, Díaz M (2014) Influence of biofilm on activated carbon on the adsorption and biodegradation of salicylic acid in wastewater. Water Air Soil Pollut 225:1–12. doi:10.1007/s11270-013-1858-9

    Article  CAS  Google Scholar 

  • Combarros RG, Collado S, Laca A, Díaz M (2015) Conditions and mechanisms in thiocyanate biodegradation. J Residuals Sci Technol 12(3):113–124

    Article  Google Scholar 

  • Díaz M, García AI, García LA (1996) Mixing power, external convection, and effectiveness in bioreactors. Biotechnol Bioeng 51:131–140. doi:10.1002/(SICI)1097-0290(19960720)51:2<131::AID-BIT1>3.0.CO;2-K

    Article  Google Scholar 

  • Fall C, Millán-Lagunas E, Bâ KM, Gallego-Alarcón I, García-Pulido D, Díaz-Delgado C, Solís-Morelos C (2012) COD fractionation and biological treatability of mixed industrial wastewaters. J Environ Manag 113:71–77. doi:10.1016/j.jenvman.2012.08.032

    Article  CAS  Google Scholar 

  • Foladori P, Bruni L, Tamburini S, Ziglio G (2010) Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry. Water Res 44:3807–3818. doi:10.1016/j.watres.2010.04.027

    Article  CAS  Google Scholar 

  • Fuentes MS, Alvarez A, Saez JM, Benimeli CS, Amoroso MJ (2014) Methoxychlor bioremediation by defined consortium of environmental Streptomyces strains. Int J Environ Sci Technol 11:1147–1156. doi:10.1007/s13762-013-0314-0

    Article  CAS  Google Scholar 

  • Hadibarata T, Teh Z (2014) Optimization of pyrene degradation by white-rot fungus Pleurotus pulmonarius F043 and characterization of its metabolites. Bioprocess Biosyst Eng 37:1679–1684. doi:10.1007/s00449-014-1140-6

    Article  CAS  Google Scholar 

  • Herrero M, Stuckey DC (2014) Bioaugmentation and its application in wastewater treatment: a review. Chemosphere. doi:10.1016/j.chemosphere.2014.10.033

    Google Scholar 

  • Hewitt CJ, Nebe-von-Caron G (2004) The application of multi-parameter flow cytometry to monitor individual microbial cell physiological state. Adv Biochem Eng Biot 89:197–223

    CAS  Google Scholar 

  • Hsu Y-C, Yang H-C, Chen J-H (2004) The enhancement of the biodegradability of phenolic solution using preozonation based on high ozone utilization. Chemosphere 56:149–158. doi:10.1016/j.chemosphere.2004.02.011

    Article  CAS  Google Scholar 

  • Huang H, Feng C, Pan X, Wu H, Ren Y, Wu C, Wei C (2013) Thiocyanate oxidation by coculture from a coke wastewater treatment plant. J Biomater Nanobiotechnol 4:37–46

    Article  Google Scholar 

  • Ibáñez SG, Merini LJ, Barros GG, Medina MI, Agostini E (2014) Vicia sativa–rhizospheric bacteria interactions to improve phenol remediation. Int J Environ Sci Technol 11:1679–1690. doi:10.1007/s13762-013-0357-2

    Article  Google Scholar 

  • Juang R-S, Tsai S-Y (2006) Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate. Biochem Eng J 31:133–140. doi:10.1016/j.bej.2006.05.025

    Article  CAS  Google Scholar 

  • Kim S-J, Katayama Y (2000) Effect of growth conditions on thiocyanate degradation and emission of carbonyl sulfide by Thiobacillus thioparus THI115. Water Res 34:2887–2894. doi:10.1016/S0043-1354(00)00046-4

    Article  CAS  Google Scholar 

  • Kim YM, Park D, Jeon CO, Lee DS, Park JM (2008) Effect of HRT on the biological pre-denitrification process for the simultaneous removal of toxic pollutants from cokes wastewater. Bioresour Technol 99:8824–8832. doi:10.1016/j.biortech.2008.04.050

    Article  CAS  Google Scholar 

  • Kwon H, Woo S, Park J (2002) Thiocyanate degradation by Acremonium strictum and inhibition by secondary toxicants. Biotechnol Lett 24:1347–1351. doi:10.1023/A:1019825404825

    Article  CAS  Google Scholar 

  • Lei G, Ren H, Ding L, Wang F, Zhang X (2010) A full-scale biological treatment system application in the treated wastewater of pharmaceutical industrial park. Bioresour Technol 101:5852–5861. doi:10.1016/j.biortech.2010.03.025

    Article  CAS  Google Scholar 

  • Li H-q, Han H-j, Du M-a, Wang W (2011) Removal of phenols, thiocyanate and ammonium from coal gasification wastewater using moving bed biofilm reactor. Bioresour Technol 102:4667–4673. doi:10.1016/j.biortech.2011.01.029

    Article  CAS  Google Scholar 

  • Loh K-C, Yu Y-G (2000) Kinetics of carbazole degradation by Pseudomonas putida in presence of sodium salicylate. Water Res 34:4131–4138. doi:10.1016/S0043-1354(00)00174-3

    Article  CAS  Google Scholar 

  • Marañón E, Vázquez I, Rodríguez J, Castrillón L, Fernández Y, López H (2008) Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale. Bioresour Technol 99:4192–4198. doi:10.1016/j.biortech.2007.08.081

    Article  Google Scholar 

  • McGenity TJ, Folwell BD, McKew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:10. doi:10.1186/2046-9063-8-10

    Article  Google Scholar 

  • McLaughlin H, Farrell A, Quilty B (2006) Bioaugmentation of activated sludge with two Pseudomonas putida strains for the degradation of 4-chlorophenol. J Environ Sci Health Part A 41:763–777. doi:10.1080/10934520600614348

    Article  CAS  Google Scholar 

  • Mikesková H, Novotný Č, Svobodová K (2012) Interspecific interactions in mixed microbial cultures in a biodegradation perspective. Appl Microbiol Biotechnol 95:861–870. doi:10.1007/s00253-012-4234-6

    Article  Google Scholar 

  • Nielsen TH, Sjøholm OR, Sørensen J (2009) Multiple physiological states of a Pseudomonas fluorescens DR54 biocontrol inoculant monitored by a new flow cytometry protocol. FEMS Microbiol Ecol 67:479–490

    Article  CAS  Google Scholar 

  • Qiao L, Wang J-l (2010) Microbial degradation of pyridine by* Paracoccus sp. isolated from contaminated soil. J Hazard Mater 176:220–225. doi:10.1016/j.jhazmat.2009.11.016

    Article  CAS  Google Scholar 

  • Quirós C, Herrero M, García LA, Díaz M (2007) Application of flow cytometry to segregated kinetic modeling based on the physiological states of microorganisms. Appl Environ Microbiol 73:3993–4000. doi:10.1128/AEM.00171-07

    Article  Google Scholar 

  • Sharma NK, Philip L, Murty Bhallamudi s (2012) Aerobic degradation of phenolics and aromatic hydrocarbons in presence of cyanide. Bioresour Technol 121:263–273. doi:10.1016/j.biortech.2012.06.039

    Article  CAS  Google Scholar 

  • Shivaraman N, Kumaran P, Pandey RA, Chatterjee SK, Chowdhary KR, Parhad NM (1985) Microbial degradation of thiocyanate, phenol and cyanide in a completely mixed aeration system. Environ Pollut Ser A Ecol Biol 39:141–150. doi:10.1016/0143-1471(85)90012-1

    Article  CAS  Google Scholar 

  • Sorokin DY, Tourova TP, Antipov AN, Muyzer G, Kuenen JG (2004) Anaerobic growth of the haloalkaliphilic denitrifying sulfuroxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate. Microbiology 150:2435–2442

    Article  CAS  Google Scholar 

  • Staib C, Lant P (2007) Thiocyanate degradation during activated sludge treatment of coke-ovens wastewater. Biochem Eng J 34:122–130. doi:10.1016/j.bej.2006.11.029

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R. G. Combarros wishes to express gratitude for a research grant from the Government of the Principality of Asturias (Severo Ochoa Programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Díaz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 607 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Combarros, R.G., Collado, S., Laca, A. et al. Understanding the simultaneous biodegradation of thiocyanate and salicylic acid by Paracoccus thiocyanatus and Pseudomonas putida . Int. J. Environ. Sci. Technol. 13, 649–662 (2016). https://doi.org/10.1007/s13762-015-0906-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0906-y

Keywords

Navigation