Skip to main content
Log in

Effects of two plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase on oat growth in petroleum-contaminated soil

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Petroleum is potentially toxic to living organisms, and there are worldwide efforts to develop methods for bioremediation of petroleum-contaminated soils. Phytoremediation is an effective method to reduce the concentration of petroleum in soils, and plant growth-promoting rhizobacteria (PGPR) play an important role in the phytoremediation. Two PGPR, Pseudomonas aeruginosa SLC-2 and Serratia marcescens BC-3, were isolated from the rhizophere of Echinochloa grown in petroleum-contaminated soil. These isolates showed capacities for 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole acetic acid production, siderophore synthesis, and the degradation of petroleum. The ACC deaminase activity of SLC-2 and BC-3 was 2.52 ± 0.03 μmol α-KA (mg Pr·h)−1 and 38.52 ± 0.37 μmol α-KA (mg Pr·h)−1, respectively. On the other hand, when the concentration of l-Trp increased, the IAA synthesis of BC-3 also increased, while the synthesis of SLC-2 did not change significantly. The ability of synthesized siderophore of SLC-2 was much higher than that of BC-3. The petroleum degradations of SLC-2 and BC-3 increased 4.78 and 7.36 %, respectively. The pot experiment of oat was performed to evaluate the plant growth-promoting abilities of SLC-2 and BC-3. Compared with non-inoculated controls, the height and fresh weight of stems increased (23.64 and 42.57) % and (16.98 and 28.3) %, respectively, whereas the length and fresh weight of roots also increased (10.34 and 20.84) and (24.13 and 43.11) %, respectively, when inoculated with SLC-2 and BC-3. The results indicated that P. aeruginosa SLC-2 and S. marcescens BC-3 can serve as promising microbes for increasing plant growth in petroleum-contaminated soil to improve the phytoremediation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Babalola O (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570

    Article  CAS  Google Scholar 

  • Bhattacharjee R, Jourand P, Chaintreuil C, Dreyfus B, Singh A, Mukhopadhyay S (2012) Indole acetic acid and ACC deaminase-producing Rhizobium leguminosarum bv. trifolii SN10 promote rice growth, and in the process undergo colonization and chemotaxis. Biol Fertil Soils 48(2):173–182

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brooijmans RJW, Pastink MI, Siezen RJ (2009) Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microb Biotechnol 2(6):587–594

    Article  CAS  Google Scholar 

  • Conesa HM, María-Cervantes A, Álvarez-Rogel J, González-Alcaraz MN (2014) Role of rhizosphere and soil properties for the phytomanagement of a salt marsh polluted by mining wastes. Int J Environ Sci Technol 11(5):1353–1364

    Article  CAS  Google Scholar 

  • Dastager SG, Deepa CK, Pandey A (2010) Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea. Plant Physiol Biochem 48(12):987–992

    Article  CAS  Google Scholar 

  • Ferreira JTP, Santos TMC, Albuquerque LS, Santos JV, Filho JAC, Neto CER (2011) Isolation and selection of growth-promoting bacteria of the genus Bacillus and its effect on two varieties of lettuce (Lactuca sativa L.). Int Res J Microbiol 2(2):70–78

    Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68

    Article  CAS  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26(1):192–195

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • Hong S, Ryu H, Kim J, Cho K-S (2011) Rhizoremediation of diesel-contaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation 22(3):593–601

    Article  CAS  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    Article  CAS  Google Scholar 

  • Huang X-D, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130(3):453–463

    Article  CAS  Google Scholar 

  • Jha C, Patel B, Saraf M (2012) Stimulation of the growth of Jatropha curcas by the plant growth promoting bacterium Enterobacter cancerogenus MSA2. World J Microbiol Biotechnol 28(3):891–899

    Article  CAS  Google Scholar 

  • Karnwal A (2009) Production of indole acetic acid by Fluorescent Pseudomonas in the presence of l-tryptophan and rice root exudates. J Plant Pathol 91(1):61–63

    CAS  Google Scholar 

  • Kausar R, Shahzad SM (2006) Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress. J Agric Soc Sci 2(4):216–218

    Google Scholar 

  • Lee YH, Lee WH, Lee DK, Shim HK (2001) Factors relating to induced systemic resistance in watermelon by plant growth-promoting Pseudomonas spp. Plant Pathol J 17(3):174–179

    Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Anton van Leeuw 86(1):1–25

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63(1):541–556

    Article  CAS  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69(8):4396–4402

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90(2):831–837

    Article  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872

    Article  CAS  Google Scholar 

  • Marinescu M, Dumitru M, Lăcătuşu A, M Marinescu (2010) The influence of maize and a natural product on the biodegradation of oil polluted soils. Res J Agric Sci 42(3):678–683

    Google Scholar 

  • Merkl N, Schultze-Kraft R, Arias M (2006) Effect of the tropical grass Brachiaria brizantha (Hochst. ex A. Rich.) Stapf on microbial population and activity in petroleum-contaminated soil. Microbiol Res 161(1):80–91

    Article  CAS  Google Scholar 

  • Mohawesh O, Mahmoud M, Janssen M, Lennartz B (2014) Effect of irrigation with olive mill wastewater on soil hydraulic and solute transport properties. Int J Environ Sci Technol 11(4):927–934

    Article  CAS  Google Scholar 

  • Navabakhsh M, Tamiz R (2013) Influences of rural industries on sustainable social and environmental developments. Int J Environ Sci Technol 10(1):191–198

    Article  Google Scholar 

  • Ogri OR (2001) A review of the Nigerian petroleum industry and the associated environmental problems. Environmentalist 21(1):11–21

    Article  Google Scholar 

  • Patel D, Jha C, Tank N, Saraf M (2012) Growth enhancement of chickpea in saline soils using plant growth-promoting rhizobacteria. J Plant Growth Regul 31(1):53–62

    Article  CAS  Google Scholar 

  • Patten CL (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118(1):10–15

    Article  CAS  Google Scholar 

  • Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90(2):159–168

    Article  CAS  Google Scholar 

  • Richardson A, Barea J-M, McNeill A, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1):305–339

    Article  CAS  Google Scholar 

  • Sakai Y, Matsumoto S, Sadakata M (2004) Alkali soil eeclamation with flue gas desulfurization gypsum in China and assessment of metal content in corn grains. Soil Sediment Contam 13(1):65–80

    Article  CAS  Google Scholar 

  • Saraf M, Jha C, Patel D (2011) The role of ACC deaminase producing PGPR in sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria microbiology monographs, vol 18. Springer, Berlin, pp 365–385

    Chapter  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–1292

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  CAS  Google Scholar 

  • Sergeeva E, Shah S, Glick B (2006) Growth of transgenic canola (Brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on high concentrations of salt. World J Microbiol Biotechnol 22(3):277–282

    Article  CAS  Google Scholar 

  • Sharma NK, Bhardwaj S, Srivastava PK, Thanki YJ, Gadhia PK, Gadhia M (2012) Soil chemical changes resulting from irrigating with petrochemical effluents. Int J Environ Sci Technol 9(2):361–370

    Article  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS, Wj Yim, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem 49(4):427–434

    Article  CAS  Google Scholar 

  • Tao Y, Ferrer J-L, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133(1):164–176

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32(2):67–71

    Article  CAS  Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  Google Scholar 

  • Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70(3):660–703

    Article  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64(6):991–997

    Article  CAS  Google Scholar 

  • Zhao Y, Hasenstein K (2009) Primary root growth regulation: the role of auxin and ethylene antagonists. J Plant Growth Regul 28(4):309–320

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant No. 31170479), the Natural Science Foundation of Heilongjiang province, China (Grant No. C201142), Programs for Science and Technology Development of Heilongjiang Province, China (Grant No. GC12B304), the Graduate Innovation Fund of Harbin Normal University (HSDBSCX2013-04), and Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Heilongjiang Province (2010TD10) and Harbin Normal University (KJTD2011-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J.L., Xie, B.M., Shi, X.H. et al. Effects of two plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase on oat growth in petroleum-contaminated soil. Int. J. Environ. Sci. Technol. 12, 3887–3894 (2015). https://doi.org/10.1007/s13762-015-0798-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0798-x

Keywords

Navigation