Skip to main content
Log in

Rapid inactivation of waterborne bacteria using boron-doped diamond electrodes

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The application of a boron-doped diamond electrode in electrochemical water disinfection was investigated with respect to its inactivation potential of three indicator microorganisms. Drinking water and the effluent of a wastewater treatment plant spiked with Escherichia coli, Enterococcus faecium and Pseudomonas aeruginosa were electrolysed under different conditions in a batch reactor. All three bacteria species could be successfully inactivated in drinking water. The disinfection rate depended on the applied charge, with far more efficiency at high current densities (208 and 333 mA/cm2) under high ozone concentrations measured in contrast to low current densities (42 mA/cm2) where bacterial inactivation was rather driven by hydroxyl radicals. When oxidising a target pharmaceutical compound in the wastewater treatment plant effluent, the water matrix exhibited an ozone scavenging effect. The resulting decrease in the efficiency could not be detected for the disinfection experiments in the complex water matrix compared to drinking water, which indicates a different disinfection mechanism, probably due to reactive chlorine species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59

    Article  CAS  Google Scholar 

  • Anglada Á, Urtiaga A, Ortiz I (2009) Pilot scale performance of the electro-oxidation of landfill leachate at boron-doped diamond anodes. Environ Sci Technol 43:2035–2040

    Article  CAS  Google Scholar 

  • Anglada Á, Urtiaga A, Ortiz I, Mantzavinos D, Diamadopoulos E (2011) Boron-doped anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products. Water Res 45:828–838

    Article  CAS  Google Scholar 

  • Bader H, Hoigné J (1981) Determination of ozone in water by the indigo method. Water Res 15:449–456

    Article  CAS  Google Scholar 

  • Bergmann H (2010) Zur Bewertung von Diamantelektroden für die Wasserdesinfektionselektrolyse. gwf-Wasser/Abwasser June 2010:604–613

  • Burleson GR, Murray TM, Pollard M (1975) Inactivation of viruses and bacteria by ozone, with and without sonication. Appl Microbiol 29:340–344

    CAS  Google Scholar 

  • Caslake LF, Connolly DJ, Menon V, Duncanson CM, Rojas R, Tavakoli J (2004) Disinfection of contaminated water by using solar irradiation. Appl Environ Microbiol 70:1145–1150

    Article  CAS  Google Scholar 

  • Cho M, Chung H, Yoo J (2003) Disinfection of water containing natural organic matter using ozone-initiated radical reactions. Appl Environ Microbiol 69:2284–2291

    Article  CAS  Google Scholar 

  • Cho M, Kim J, Kim JY, Yoon J, Kim J-H (2010) Mechanisms of Escherichia coli inactivation by several disinfectants. Water Res 44:3410–3418

    Article  CAS  Google Scholar 

  • Council Directive 1998/83/EC on the quality of water intended for human consumption. OJ L 330. 05/12/1998:32–54

  • Council Directive 2006/7/EC concerning the management of bathing water. L 064. 04/03/2006:37–51

  • Council Directive 2008/1/EC on integrated pollution prevention and control. OJ L 24. 29.01.2008:8–29

  • Criegée R (1975) Mechanism of ozonolysis. Angew Chem Int Ed 14:745–752

    Article  Google Scholar 

  • da Silva LM, Santana MHP, Boodts JFC (2003) Electrochemistry and green chemical processes: electrochemical ozone production. Quim Nova 26:880–888

    Article  Google Scholar 

  • Eaton AD, Clesceri LS, Rice EW, Greenberg AE, Franson MAH (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Eliasson B, Hirth M, Kogelschatz U (1987) Ozone synthesis from oxygen in dielectric barrier discharges. J Phys D Appl Phys 20:1421–1437

    Article  CAS  Google Scholar 

  • Elovitz MS, von Gunten U (1999) Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone-Sci Eng 21:239–260

    Article  CAS  Google Scholar 

  • Figueras MJ, Borrego JJ (2010) New perspectives in monitoring drinking water microbial quality. Int J Environ Res Public Health 7:4179–4202

    Article  Google Scholar 

  • Frontistis Z, Brebou C, Venieri D, Mantzavinos D, Katsaounis A (2011) BDD anodic oxidation as tertiary wastewater treatment for the removal of emerging micro-pollutants, pathogens and organic matter. J Chem Technol Biotechnol 86:1233–1236

    Article  CAS  Google Scholar 

  • Fryda M, Matthée T (2006) Diamantelektroden in der Elektrochemie oder “diamonds are the electrochemist´s best friend?!”. Aktuelle Wochenschau 8b. http://www.aktuelle-wochenschau.de/2006/woche8b/woche8b.html. Accessed 09 April 2013

  • Fryda M, Matthée T, Mulcahy S, Höfer M, Schäfer L, Tröster I (2003) Applications of DIACHEM® electrodes in electrolytic water treatment. Electrochem Soc Interface 2003:40–44

    Google Scholar 

  • Gibson KE, Schwab KJ (2011) Tangential-flow ultrafiltration with integrated inhibition detection for recovery of surrogates and human pathogens from large-volume source water and finished drinking water. Appl Environ Microbiol 77:385–390

    Article  CAS  Google Scholar 

  • Gottschalk C, Libra JA, Saupe A (2010) Ozonation of water and waste water, 2nd edn. Wiley-VCH, Weinheim, pp 38–42

    Google Scholar 

  • Griessler M, Knetsch S, Schimpf E, Schmidhuber A, Schrammel B, Wesner W, Sommer R, Kirschner AKT (2011) Inactivation of Pseudomonas aeruginosa in electrochemical advanced oxidation process with diamond electrodes. Water Sci Technol 63:2010–2016

    Article  CAS  Google Scholar 

  • Haaken D, Dittmar T, Schmalz V, Worch E (2012) Influence of operating conditions and wastewater-specific parameters on the electrochemical bulk disinfection of biologically treated sewage at boron-doped diamond (BDD) electrodes. Desalin Water Treat 46:160–167

    Article  CAS  Google Scholar 

  • Heim C, Glas K (2011) Ozone I: characteristics/generation/possible applications. Brew Sci 64:8–12

    CAS  Google Scholar 

  • Heim C, Ureña de Vivanco M, Rajab M, Glas K, Horn H, Helmreich B, Letzel T (2011) Ozone II: characterization of in situ ozone generation using diamond electrodes. Brew Sci 64:83–88

    Google Scholar 

  • Hoigné J, Bader H (1983a) Rate constants of reactions of ozone with organic and inorganic compounds in water—1. Water Res 17:173–183

    Article  Google Scholar 

  • Hoigné J, Bader H (1983b) Rate constants of reactions of ozone with organic and inorganic compounds in water—2. Water Res 17:185–194

    Article  Google Scholar 

  • Huber M, Göbel A, Joss A, Hermann N, Löffler D, McArdell CS, Ried A, Siegrist H, Ternes T, von Gunten U (2005) Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ Sci Technol 39:8014–8022

    Article  Google Scholar 

  • Hunt NK, Mariñas BJ (1997) Kinetics of Escherichia coli inactivation with ozone. Water Res 31:1355–1362

    Article  Google Scholar 

  • Imo TS, Oomori T, Toshihiko M, Tamaki F (2007) The comparative study of trihalomethanes in drinking water. Int J Environ Sci Technol 4:421–426

    Article  CAS  Google Scholar 

  • Jeong J, Kim JY, Yoon J (2006) The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environ Sci Technol 40:6117–6122

    Article  CAS  Google Scholar 

  • Khadre MA, Yousef AE, Kim J-G (2001) Microbiological aspects of ozone applications in food: a review. J Food Sci 66:1242–1252

    Article  CAS  Google Scholar 

  • Kraft A (2007) Doped diamond: a compact review on a new, versatile electrode material. Int J Electrochem Sci 2:355–385

    CAS  Google Scholar 

  • Kümmerer K, Erbe T, Gartiser S, Brinker L (1998) AOX emissions from hospitals into municipal waste water. Chemosphere 36:2437–2445

    Article  Google Scholar 

  • Lambert PA (2002) Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 95:22–26

    CAS  Google Scholar 

  • Lazarova V, Savoye P, Janex ML, Blatchley ER III, Pommepuy M (1999) Advanced wastewater disinfection technologies: state of the art and perspectives. Water Sci Technol 40:203–213

    Article  CAS  Google Scholar 

  • Lee SH, Levy DA, Craun GF, Beach MJ, Caldera ML (2002) Surveillance for waterborne-disease outbreaks—United States, 1999–2000. Morb Mortal Wkly Rep 51:SS-8

  • Liu F, He G, Zhao M, Huang L, Qu M (2012) Study on the wastewater disinfection at the boron-doped diamond film electrode. Procedia Environ Sci 12:116–121

    Article  CAS  Google Scholar 

  • Menapace HM, Diaz N, Weiss S (2008) Electrochemical treatment of pharmaceutical wastewater by combining anodic oxidation with ozonation. J Environ Sci Heal A 43:1–8

    Article  Google Scholar 

  • Michaud P-A, Panizza M, Ouattara L, Diaco T, Foti G, Comminellis C (2003) Electrochemical oxidation of water on synthetic boron-doped diamond thin film anodes. J Appl Electrochem 33:151–154

    Article  CAS  Google Scholar 

  • Mtethiwa AH, Munyenyembe A, Jere W, Nyali E (2008) Efficiency of oxidation ponds in wastewater treatment. Int J Environ Res 2:149–152

    CAS  Google Scholar 

  • Ndjomgoue-Yossa AC, Nanseu-Njiki CP, Kengue IM, Ngameni E (2014) Effect of electrode material and supporting electrolyte on the treatment of water containing Escherichia coli by electrocoagulation. Int J Environ Sci Technol. doi:10.1007/s13762-014-0609-9

  • Pleskov YV, Sakharova AY, Krotova MD, Bouilov LL, Spitsyn BV (1987) Photoelectrochemical properties of semiconductor diamond. J Electroanal Chem 228:19–27

    Article  CAS  Google Scholar 

  • Restaino L, Frampton EW, Hemphill JB, Palnikar P (1995) Efficacy of ozonated water against various food-related microorganisms. Appl Environ Microbiol 61:3471–3475

    CAS  Google Scholar 

  • Schmalz V, Dittmar T, Fischer D, Worch E (2008) Diamond electrodes in decentralized wastewater treatment: electrochemical degradation of the chemical oxygen demand (COD) in wastewater with high organic loads from hardening shops. CIT 80:1545–1550

    CAS  Google Scholar 

  • Schmalz V, Dittmar T, Haaken D, Worch E (2009) Electrochemical disinfection of biologically treated wastewater from small treatment systems by using boron-doped diamond (BDD) electrodes—contribution for direct reuse of domestic wastewater. Water Res 43:5260–5266

    Article  CAS  Google Scholar 

  • Tanner BD, Kuwahara S, Gerba CP, Reynolds KA (2004) Evaluation of electrochemically generated ozone for the disinfection of water and wastewater. Water Sci Technol 50:19–25

    CAS  Google Scholar 

  • Tröster I, Schäfer L, Fryda M, Matthée T (2004) Electrochemical advanced oxidation process using DiaChem electrodes. Water Sci Technol 49:207–212

    Google Scholar 

  • Ureña de Vivanco M, Rajab M, Heim C, Helmreich B, Letzel T (2013) Set-up and energetic considerations for three advanced oxidation reactors treating organic compounds. Chem Eng Technol 36:1–8

    Article  Google Scholar 

  • von Gunten U (2003a) Ozonation of drinking water: part I. Oxidation kinetics and product formation. Water Res 37:1443–1467

    Article  Google Scholar 

  • von Gunten U (2003b) Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res 37:1469–1487

    Article  Google Scholar 

  • von Gunten U, Pinkernell U (2000) Ozonation of bromide-containing drinking waters: a delicate balance between disinfection and bromate formation. Water Sci Technol 41:53–59

    Google Scholar 

  • Wolfe RL, Stewart MH, Liang S, McGuire MJ (1989) Disinfection of model indicator organisms in a drinking water pilot plant by using PEROXONE. Appl Environ Microbiol 55:2230–2241

    CAS  Google Scholar 

  • Yao Y, Kubota Y, Murakami T, Ochiai T, Ishiguro H, Nakata K, Fujishima A (2011) Electrochemical inactivation kinetics of boron-doped diamond electrode on waterborne pathogens. J Water Health 09(3):534–543

    Article  CAS  Google Scholar 

  • Yates R, Stenstrom M (2000) Gravimetric sampling procedure for aqueous ozone concentrations. Water Res 34:1413–1416

    Article  CAS  Google Scholar 

  • Zhu X, Tong M, Shi S, Zhao H, Ni J (2008) Essential explanation of the strong mineralization performance of boron-doped diamond electrodes. Environ Sci Technol 42:4914–4920

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Federal Ministry of Education and Research of Germany (03X0087G). The authors want to thank the Institute of Microbial Ecology, Technische Universität München, for their support with the bacteria cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Heim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heim, C., Ureña de Vivanco, M., Rajab, M. et al. Rapid inactivation of waterborne bacteria using boron-doped diamond electrodes. Int. J. Environ. Sci. Technol. 12, 3061–3070 (2015). https://doi.org/10.1007/s13762-014-0722-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0722-9

Keywords

Navigation