Skip to main content

Advertisement

Log in

Performance of a system of natural wetlands in leachate of a posttreatment landfill

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Phytoremediation is an emerging technology in landfill leachate posttreatment. The evaluation of a system composed of three natural wetlands. The wetlands vegetation cover was monitored during 2 years by estimating the coverage area of the macrophytes. Chemical analyzes of the effluent were conducted monthly. The monitoring and identification of macrophytes indicated that the vegetation structure was represented by four species of higher relative cover: Pistia stratiotes L. (water lettuce), Echinochloa polystachya (Kunth) Hitchc. (creeping river grass), Eichhornia crassipes (Mart.) Solms (water hyacinth) and Alternanthera philoxeroides (Mart.) Griseb. The system of natural wetlands had an average efficiency of 75 % for biochemical oxygen demand, 63 % for chemical oxygen demand, 84 % for ammoniacal nitrogen, 89 % for total nitrogen and 70 % for phosphorus. The concentrations of heavy metals in the roots, as well as in the branches of E. crassipes and E. polystachya, lead us to the conclusion that such species perform phytoextraction for Cd and Pb accumulating the metals in the biomass. The results show that this is a viable alternative that can be associated with forms of conventional treatment of leachate, such as the treatment with aerobic and facultative ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbasi AS, Ramasamy EV (1999) Biotechnological methods of pollution control. Orient Longman, Hyderabad

    Google Scholar 

  • Ansola G, Arroyo P, Sáenz de Miera LE (2014) Characterization of the soil bacterial community structure and composition of natural and constructed wetlands. Sci Total Environ 473–474:63–71

  • Ansolla G, Fernandez CLE (1995) Removal of organic matter and nutrients from urban wastewater by using an experimental emergent aquatic macrophyte system. Ecol Eng 5:13–19

    Article  Google Scholar 

  • Apha-Awwa-Wef (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

  • Armstrong W, Beckett PM (1992) Phragmites australis: venturi and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol 120:197–207

    Article  Google Scholar 

  • Bedford BL, Bouldin DR, Beliveau BD (1991) Net oxygen and carbon-dioxide balances in solutions bathing roots of wetland plants. J Ecol 79:943–959

    Article  Google Scholar 

  • Berlyn GP, Miksche JP (1976) Botanical microtechnique and cytochemistry. State University Press, Iowa

    Google Scholar 

  • Bialowiec A, Davies L, Albuquerque A, Randerson PF (2012) The influence of plants on nitrogen removal from landfill leachate in discontinuous batch shallow constructed wetland with recirculating subsurface horizontal flow. Ecol Eng 40:44–52

    Article  Google Scholar 

  • Billore SK, Singh N, Sharma JK, Nelson RM (1999) Horizontal subsurface flow gravel bed constructed wetland with Phragmites karka in central India. Water Sci Technol 40:163–171

    Article  CAS  Google Scholar 

  • Braun-Blanquet J (1979) Fitossociologia: base para el estúdio de lãs comunidades vegetales. H. Blume ediciones, Madrid

    Google Scholar 

  • Brix H (1994) Functions of macrophytes in constructed wetlands. Water Sci Technol 29:71–78

    CAS  Google Scholar 

  • Brix H (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35:11–17

    Article  CAS  Google Scholar 

  • Carneiro C, Reissmamn CB, Marques R (2006) Comparação de métodos de análise química de K, Ca, Mg e Al em folhas de erva-mate (Ilex paraguarienses, St. Hil.). Cerne Lavras 12:113–122

    Google Scholar 

  • Chappell KR, Goulder R (1994) Seasonal variation of epiphytic extracellular enzyme activity on 2 freshwater plants, Phragmites australis and Elodea canadensis. Archiv für Hydrobiologie 132:237–253

    CAS  Google Scholar 

  • Chen HJ, Qualls RG, Miller GC (2002) Adaptive responses of Lepidium latigolium to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environ Exp Bot 48:119–128

    Article  Google Scholar 

  • Cheng Y, Guo L (2014) Treatment of municipal landfill leachate using magnetic porous ceramsite carrier. J Water Reuse Desalin 4(2):100–108

  • Cheng XY, Chen WY, Gu BH, Liu XC, Chen F, Chen ZH, Zhou XY, Li YX, Huang H, Chen YJ (2009) Morphology, ecology, and contaminant removal efficiency of eight wetland plants with differing root systems. Hydrobiologia 623:77–85

    Article  CAS  Google Scholar 

  • Chiemchaisri C, Chiemchaisri W, Junsod J, Threedeach S, Wicranarachchi PN (2009) Leachate treatment and greenhouse gas emission in subsurface horizontal flow constructed wetland. Bioresour Technol 100:3808–3814

    Article  CAS  Google Scholar 

  • Ciria MP, Solano ML, Solano P (2005) Role of macrophyte Typha latifolia in a Constructed Wetland for wastewater treatment and assessment of its potential is a biomass fuel. Biosyst Eng 92:535–544

    Article  Google Scholar 

  • Frank A, Turner G, Iannacone LR, Touchette BW (2010) Ecophysiological responses of five emergent-wetland plants to diminished water supply: an experimental microcosm study. Aquat Ecol 44:101–112

    Article  Google Scholar 

  • Granato M (1995) Utilização do aguapé no tratamento de efluentes com cianetos. Série Tecnologia Ambiental 5:1–2

    Google Scholar 

  • Greenway M, Woolley A (1999) Constructed wetlands in Queensland: performance efficiency and nutrient bioaccumulation. Ecol Eng 12:39–55

    Article  Google Scholar 

  • Greenway M, Woolley A (2001) Changes in plant biomass and nutrient removal over three years in a constructed wetland in Cairns, Australia. Water Sci Technol 44:303–310

    CAS  Google Scholar 

  • Gumbricht T (1993) Nutrient removal processes in freshwater submersed macrophytes systems. Ecol Eng 2:1–30

    Article  Google Scholar 

  • Heard TA, Winterton SL (2000) Interactions between nutrient status and weevil herbivory in the biological control of water hyacinth. J Appl Ecol 37:117–127

    Article  Google Scholar 

  • Hill DT, Payton JD (1998) Influence of temperature on treatment efficiency of constructed wetlands. Trans ASAE 41:393–396

    Article  Google Scholar 

  • Jing SR, Lin YF, Lee DY, Wang TW (2001) Nutrient removal from polluted river water by using constructed wetlands. Bioresour Technol 76:131–135

    Article  CAS  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw Hill Book, New York

    Google Scholar 

  • Jones DL, Williamson KL, Owen AG (2005) Phytoremediation of landfill leachate. Waste Manag 26:825–837

    Article  Google Scholar 

  • Justin MZ, Zupancic M (2009) Combined purification and reuse of landfill leachate by constructed wetland and irrigation of grass and willows. Desalination 246:157–168

    Article  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Kadlec RH (1995) Overview: surface flow constructed wetlands. Water Sci Technol 32:1–12

    Article  CAS  Google Scholar 

  • Kadlec RH, Knight RI (1996) Treatment wetlands. Lewis, Boca Raton

    Google Scholar 

  • Kadlec RH, Zmarthie LA (2010) Wetland treatment of leachate from a closed landfill. Ecol Eng 36:946–957

    Article  Google Scholar 

  • Karathanasis AD, Potter CL, Coyne MS (2003) Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecol Eng 20:157–169

    Article  Google Scholar 

  • Kirk GJD, Begg CBM, Solivas JL (1993) The chemistry of the lowland rice rhizosphere. Plant Soil 156:83–86

    Article  Google Scholar 

  • Kyambadde J, Kansiime F, Gumaelius L, Dalhammar G (2004) A comparative study of Cyperus papyrus and Miscanthidium violaceum based constructed wetlands for wastewater treatment in a tropical climate. Water Resour 38:475–485

    CAS  Google Scholar 

  • Lai WL, Zhamg Y, Zhang HC (2012) Radial oxygen loss, photosynthesis, and nutrient removal of 35 wetland plants. Ecol Eng 39:24–30

    Article  Google Scholar 

  • Larcher W (2006) Ecofisiologia vegetal, 3rd edn. São Carlos, Rima

    Google Scholar 

  • Leto C, Tuttolomondo T, La Bella S, Leone R, Licata M (2013) Effects of plant species in a horizontal subsurface flow constructed wetland phytoremediation of treated urban wastewater with Cyperus alternifolius L. and Typha latifolia L. in the West of Sicily (Italy). Ecol Eng 61:282–291

    Article  Google Scholar 

  • Li H, Ye ZH, Wei ZJ, Wong MH (2011) Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants. Environ Pollut 159:30–37

    Article  CAS  Google Scholar 

  • Liang MQ, Zhang CF, Peng CL, Lai ZL, Chen DF, Chen Z (2011) Plant growth, community structure, and nutrient removal in monoculture and mixed constructed wetlands. Ecol Eng 37:309–316

    Article  Google Scholar 

  • Malavolta E, Vitti GC, Oliveira SA (1997) Avaliação do Estado Nutricional das plantas: princípios e aplicações, 2nd edn. Piracicaba, Potafos

    Google Scholar 

  • Manios T, Millner P, Stentiford EI (2000) Effect of rain and temperature on the performance of constructed reed beds. Water Environ Res 72:305–312

    Article  CAS  Google Scholar 

  • Manios T, Stentiford EI, Millner P (2002) The removal of NH3-N from primary treated wastewater in surface reed beds using different substrates. J Environ Sci Health A 37:297–308

    Article  Google Scholar 

  • Manios T, Stentiford EI, Millner P (2003) The removal of chemical oxygen demand from primary-treated domestic wastewater in surface-flow reed beds using different substrates. Water Environ Res 75:336–341

    Article  CAS  Google Scholar 

  • Marques M (2005) Phytoremediation. In: KALMAR ECO-TECH’05: waste to energy, bioremediation and leachate treatment, Kalmar, 19–26

  • Marques M, Aguiar CRC, Silva JJLS (2011) Desafios técnicos e barreiras sociais, econômicas e regulatórias na fitorremediação de solos contaminados. Revista Brasileira de Ciência do solo 35:1–11

    Article  CAS  Google Scholar 

  • Martinez F, Cuevas G, Calvo R, Walter I (2003) Biowaste effects on soil and native plants in a semiarid ecosystem. J Environ Qual 32:472–479

    Article  CAS  Google Scholar 

  • Minerais do Paraná (MINEROPAR) (2004) Atlas geológico do Estado do Paraná. Curitiba. Mineropar, 1 CD-ROM

  • Mishra VK, Tripathi BD (2009) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99:7091–7097

    Article  Google Scholar 

  • Morais JL, Sirtori C, Peralta-Zamora PG (2006) Tratamento de chorume de aterro sanitário por fotocatálise heterogênea integrada a processo biologic convencional. Quim Nova 29:20–23

    Article  Google Scholar 

  • Morris JT, Bernot RJ, Bernot MJ (2009) Nutrient cycling relative to N and C natural abundance in coastal wetland with long term nutrient additions. Aquat Ecol 43:803–813

    Article  Google Scholar 

  • Naylor S, Brisson I, Labelle MA, Drizo A, Comeau Y (2003) Treatment of freshwater fish farm effluent using constructed wetlands: the role of plants and substrate. Water Sci Technol 48:215–222

    CAS  Google Scholar 

  • Nivala J, Hoo MB, Cross C, Wallace S, Parkin G (2007) Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. Sci Total Environ 380:19–27

    Article  CAS  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1965) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  • Preussler KH, Maranho LT, Guimarães ATB, Carvalho Filho MAS, Cubas S, Azevedo JAM (2007) Influência do efluente doméstico na folha da macrófita Cladium mariscus (L.) Pohl, Cyperaceae. Revista Brasileira de Biociências 5:819–821

    Google Scholar 

  • Renou S, Givaudan JG, Poulain S, Dirassouvan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150:468–493

    Article  CAS  Google Scholar 

  • Sasikala S, Tanaka N, WahWah HSY, Jinadasa KBSN (2009) Effects of water level fluctuation on radial oxygen loss, root porosity, and nitrogen removal in subsurface vertical flow wetland mesocosms. Ecol Eng 35:410–417

    Article  Google Scholar 

  • Shildar MKC, Sharma BM (1980) Pistia stratiotes L. in Nigerian waters. Cell Mol Life Sci 36:953–955

    Google Scholar 

  • Sorrell BK, Brix H (2003) Effects of water vapour pressure deficit and stomatal conductance on photosynthesis, internal pressurization and convective flow in three emergent wetland plants. Plant Soil 253:71–79

    Article  CAS  Google Scholar 

  • Souza FA, Dziedzic M, Cubas SA, Maranho LT (2013) Restoration of polluted Waters by phytoremediation using Myriophyllum aquaticum (Vell.) Verdc, Haloragaceae. J Environ Manag 120:5–9

    Article  CAS  Google Scholar 

  • Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer U, Kästner M, Bederski O, Müller RA, Moormann H (2003) Effect of plants and microorganism in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    Article  CAS  Google Scholar 

  • Tanner CC (1996) Plant for constructed wetland treatment systems - A comparison of the growth and nutrient uptake of eight emergent species. Ecol Eng 7:59–83

    Article  Google Scholar 

  • Tanner CC, Clayton JS, Upsdell MP (1995) Effect of loading rate and planting on treatment of dairy farm wastewater in constructed wetlands-I. Removal of oxygen demand, suspended solids and faecal coliforms. Water Res 29:17

    Article  CAS  Google Scholar 

  • Van Bodegom P, Goudriaan J, Leffelaar P (2001) A mechanistic model on methane oxidation in a rice rhizosphere. Biogeochemistry 55:145–177

    Article  Google Scholar 

  • Wang J, Li W (2011) Influence of light and nitrate assimilation on the growth strategy in clonal weed Eichhornia crassipes. Aquat Ecol 45:1–9

    Article  Google Scholar 

  • Zanello S, Melo VF, Wowk G (2009) Mineralogia e teores de cromo, níquel, cobre, zinco e chumbo nos solos no entorno do aterro sanitário da Caximba em Curitiba-PR. Scientia Agraria 10:51–60

    Article  Google Scholar 

  • Zhaia X, Piwpuana N, Arias CA, Headley T, Brix H (2013) Can root exudates from emergent wetland plants fuel denitrification in subsurface flow constructed wetland systems. Ecol Eng 61:555–563

    Article  Google Scholar 

  • Zhang BY, Zhebg JS, Sharp RG (2010) Phytoremediation in engineered wetlands: mechanisms and applications. Proc Environ Sci 2:1315–1325

    Article  Google Scholar 

  • Zimmels Y, Kirzhner F, Malkovskaja A (2006) Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel. J Environ Manag 81:420–428

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Municipal Environment Secretary and the Municipality of Curitiba and Positivo University for supporting the study. The second author wishes to thank CAPES, CNPq, FAPERJ and DAAD for the constant support in the development of their research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Maranho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preussler, K.H., Mahler, C.F. & Maranho, L.T. Performance of a system of natural wetlands in leachate of a posttreatment landfill. Int. J. Environ. Sci. Technol. 12, 2623–2638 (2015). https://doi.org/10.1007/s13762-014-0674-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0674-0

Keywords

Navigation