Skip to main content
Log in

Separation of Cr(VI) from aqueous solutions by adsorption on the microfungus Ustilago maydis

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Cr(VI) adsorption from aqueous solutions on the microfungus Ustilago maydis modified with formaldehyde (UmF) was studied as a function of the initial pH, contact time, chromium concentration and temperature. The pH results showed that Cr(VI) adsorption on UmF is higher at acidic pH values and decreases as the pH increases to alkaline values. Cr(VI) adsorption also depends on the chromium concentration and temperature. The Cr(VI) adsorption data as a function of concentration obey the Freundlich and Langmuir isotherms at pH values of 2 and 6.5. The maximum sorption capacity of UmF for Cr(VI) at pH 2 was 2.53 × 10−3 mol/g (131.55 mg/g), which is significantly higher than that at pH 6.5 (0.33 × 10−3 mol/g or 17.60 mg/g). The negative value of ΔH° and the positive values of ΔG° indicate that the chromium adsorption process is exothermic and non-spontaneous. The pHpzc value was 5 for UmF and it played a role in the Cr(VI) adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aksu Z, Balibek E (2007) Chromium (VI) biosorption by dried Rhizopus Arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J Hazard Mater 145:210–220

    Article  CAS  Google Scholar 

  • Bai SR, Abraham ET (2002) Studies on enhancement of Cr(VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Res 36:1224–1236

    Article  CAS  Google Scholar 

  • Chen JP, Yang L (2005) Chemical modification of Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption. Ind Eng Chem Res 44:9931–9942

    Article  CAS  Google Scholar 

  • Chen GQ, Zhang WJ, Zeng GM, Huang JH, Wang L, Shen GL (2011) Surface-modified Phanerochaete chrysosporium as a biosorbent for Cr(VI)-contaminated wastewater. J Hazard Mater 186:2138–2143

    Article  CAS  Google Scholar 

  • Dziwulska U, Bajguz A (2004) The use of algae Chlorella vulgaris immobilized on cellex T support for separation/preconcentration of trace amounts of platinum and palladium before GFAAS determination. Anal Lett 37:2189–2203

    Article  CAS  Google Scholar 

  • El-Zahrani HA, El-Saied AI (2011) Bioremediation of heavy metal toxicity from factory effluents by transconjugants bacteria. J Egypt Soc Parasitol 41:641–650

    Google Scholar 

  • Faria PCC, Órfão JJM, Pereira MFR (2004) Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res 38:2043–2052

    Article  CAS  Google Scholar 

  • Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ Sci Pollut Res 20:2828–2843

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45:2207–2212

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S (2012) Chemical treatment technologies for waste-water recycling—an overview. RSC Adv 2:6380–6388

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saleh TA, Siddiqui MN, Agarwal S (2013a) Chromium removal from water by activated carbon developed from waste rubber tires. Environ Sci Pollut Res Int 20:1261–1268

    Article  CAS  Google Scholar 

  • Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013b) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Colloid Interface Sci 193–194:24–34

    Article  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:461–465

    Article  Google Scholar 

  • Ho YS, McKay G, Wase DAJ, Foster CF (2000) Study of the sorption of divalent metal ions on to peat. Adsorpt Sci Technol 18:639–650

    Article  CAS  Google Scholar 

  • Javaid A, Bajwa R, Shafique U, Anwar J (2011) Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenerg 35:675–1682

    Article  Google Scholar 

  • Khambhaty Y, Mody K, Basha S, Jha B (2009) Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger. Chem Eng J 145:489–495

    Article  CAS  Google Scholar 

  • Lizárraga-Guerra R, López MG (1996) Content of free amino acids in huitlacoche (Ustilago Maydis). J Agric Food Chem 44:2556–2559

    Article  Google Scholar 

  • Lizárraga-Guerra R, López MG (1998) Monosaccharide and alditol contents of huitlacoche (Ustilago Maydis). J Food Compos Anal 11:333–339

    Article  Google Scholar 

  • Lopez-Ramon MV, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F (1999) On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37:1215–1221

    Article  CAS  Google Scholar 

  • Ma W, Zhao N, Yang G, Tian L, Wang R (2011) Removal of fluoride ions from aqueous solution by the calcination product of Mg–Al–Fe hydrotalcite-like compound. Desalination 268:20–26

    Article  CAS  Google Scholar 

  • Machado MD, Santos MSF, Gouveia C, Soares HM, Soares EV (2008) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process. Bioresource Technol 99:2107–2115

    Article  CAS  Google Scholar 

  • Malherbe F, Besse JP (2000) Investigating the effects of guest–host interactions on the properties of anion-exchanged Mg–Al hydrotalcites. J Solid State Chem 155:332–341

    Article  CAS  Google Scholar 

  • Marandi R (2011) Biosorption of hexavalent chromium from aqueous solution by dead fungal biomass of Phanerochaete crysosporium: batch and fixed bed studies. Can J Chem Eng Technol 2:8–22

    Google Scholar 

  • Muñoz HS, Kubachka K, Wrobel K, Corona FG, Yathavakilla SKV, Caruso AJ, Wrobel K (2005) Metallomics approach to trace element analysis in Ustilago maydis using cellular fractionation, atomic absorption spectrometry, and size exclusion chromatography with ICP-MS detection. Agric Food Chem 53:5138–5143

    Article  Google Scholar 

  • Nadeau OW, Carlson GM (2007) Protein interactions captured by chemical cross-linking: one-step cross-linking with formaldehyde. CSH Protoc. 2007 Apr 1;2007:pdb.prot4634. doi:10.1101/pdb.prot4634

  • Puigdomenech, Program MEDUSA (make equilibrium diagrams using sophisticated algorithms). http://www.inorg.Kth.se/Reserach/Ignasi;/index.html

  • Saha B, Orvig C (2010) Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord Chem Rev 254:2959–2972

    Article  CAS  Google Scholar 

  • Sanghi R, Sankararamakrishnan N, Dave BC (2009) Fungal bioremediation of chromates: conformational changes in biomass during sequestration, binding and reduction of hexavalent chromium ions. J Hazard Mater 169:1074–1081

    Article  CAS  Google Scholar 

  • Sari A, Tuzen M (2009) Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens). J Hazard Mater 164:1004–1011

    Article  CAS  Google Scholar 

  • Say R, Denizli A, Arica YM (2001) Biosorption of cadmium(II), lead(II) and copper(II) with the filamentous fungus Phaneochaete chrysosporium. Bioresour Technol 76:67–70

    Article  CAS  Google Scholar 

  • Tewari N, Vasudevan P, Guha BK (2005) Study of biosorption of Cr(VI) by Mucor hiemalis. Biochem Eng J 23:185–192

    Article  CAS  Google Scholar 

  • Tobin JM, Cooper DG, Neufeld RJ (1982) Uptake of metal ions by Rhizopus Arrhizus. Appl Environ Microbiol 47:821–824

    Google Scholar 

  • Tsekova K, Todorova D, Ganeva S (2010) Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. Int Biodeterior Biodegrad 64:447–451

    Article  CAS  Google Scholar 

  • Ucun H, Bayhan KY, Kaya Y (2008) Kinetic and thermodynamic studies of the biosorption of Cr(VI) by Pinus Silvestri Linn. J Hazard Mater 153:52–59

    Article  CAS  Google Scholar 

  • Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii. Water Res 37:4486–4496

    Article  CAS  Google Scholar 

  • Zaini MAA, Okayama R, Machida M (2009) Adsorption of aqueous metal ions on cattle-manure-compost based activated carbons. J Hazard Mater 170:1119–1124

    Article  CAS  Google Scholar 

  • Zhang LF, Chen YY, Zhang WJ (2011) Removal of Cr(VI) from aqueous solution by acid treated fungal biomass (conference paper). Adv Mater Res 197–198:131–135

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the CONACyT project 131174-Q.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Olguín.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano-Gómez, J., Olguín, M.T. Separation of Cr(VI) from aqueous solutions by adsorption on the microfungus Ustilago maydis . Int. J. Environ. Sci. Technol. 12, 2559–2566 (2015). https://doi.org/10.1007/s13762-014-0665-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0665-1

Keywords

Navigation