Skip to main content
Log in

Consequences of anaerobic biotreatments of contaminated sediments on metal mobility

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

This study deals with anaerobic biotreatments of sediments contaminated with toxic metals carried out in slurry reactor. The sediment samples used for the investigation came from two Italian ports, and they were mainly contaminated with inorganic compounds (zinc, nickel and chromium). The treatments were aimed at assessing the responses of the autochthonous microbial community in relation to the geochemistry of the sediments (mainly organic carbon bioavailability) and the addition of organic and inorganic substrates. It was observed that the bio-available carbon in the sediments can greatly influence microbial growth but without a significant effect on metal mobilization. By contrast, the supply of inorganic nutrients to the sediments did not have a major effect on microbial growth although important changes in metal mobility were observed. Our results provide new insights on the effects of anaerobic biotreatments on changes in metal partitioning in contaminated sediments, highlighting that, under certain conditions, an increase of metals in the more mobile fractions can occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bacon JR, Davidson CM (2008) Is there a future for sequential chemical extraction? Analyst 133(1):25–46

    Article  CAS  Google Scholar 

  • Beolchini F, Pagnanelli F, Vegliò F (2001) Modeling of copper biosorption by Arthrobacter sp. in a UF/MF membrane reactor. Environ Sci Technol 35(14):3048–3054

    Article  CAS  Google Scholar 

  • Beolchini F, Rocchetti L, Regoli F, Dell’Anno A (2010) Bioremediation of marine sediments contaminated by hydrocarbons: experimental analysis and kinetic modeling. J Hazard Mater 182(1–3):403–407

    Article  CAS  Google Scholar 

  • Beolchini F, Fonti V, Rocchetti L, Saraceni G, Pietrangeli B, Dell’Anno A (2013) Chemical and biological strategies for the mobilisation of metals/semi-metals in contaminated dredged sediments: experimental analysis and environmental impact assessment. Chem Ecol 29(5):415–426

    Article  CAS  Google Scholar 

  • Buchanan JB (1971) Sediment. In: Holme NA, McIntyre AD (eds) Methods for the study of marine benthos. Blackwell, Oxford

    Google Scholar 

  • Corona-Cruz A, Gold-Bouchot G, Gutierrez-Rojas M, Monroy-Hermosillo O, Favela E (1999) Anaerobic-aerobic biodegradation of DDT (Dichlorodiphenyl Trichloroethane) in soils. Bull Environ Contam Toxicol 63(2):219–225

    Article  CAS  Google Scholar 

  • del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–541

    Article  Google Scholar 

  • Dell’Anno A, Beolchini F, Gabellini M, Rocchetti L, Pusceddu A, Danovaro R (2009) Bioremediation of petroleum hydrocarbons in anoxic marine sediments: consequences on the speciation of heavy metals. Mar Pollut Bull 58(12):1808–1814

    Article  Google Scholar 

  • Fabiano M, Danovaro R, Fraschetti S (1995) A three-year time series of elemental and biochemical composition of organic matter in subtidal sandy sediments of the Ligurian Sea (northwestern Mediterranean). Cont Shelf Res 15(11–12):1453–1469

    Article  Google Scholar 

  • Fonti V, Dell’Anno A, Beolchini F (2013) Influence of biogeochemical interactions on metal bioleaching performance in contaminated marine sediment. Water Res 47(14):5139–5152

    Article  CAS  Google Scholar 

  • Garcia-ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27(2):153–176

    Article  CAS  Google Scholar 

  • Hlavay J, Prohaska T, Weisz M, Wenzel WW, Stingeder GJ (2004) Determination of trace elements bound to soils and sediment fractions (IUPAC technical report). Pure Appl Chem 76(2):415–442

    Article  CAS  Google Scholar 

  • Li KY, Zhang Y, Xu T (1995) Bioremediation of oil-contaminated soil—a rate model. Waste Manage 15(5–6):335–338

    Article  CAS  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8(3):285–289

    Article  CAS  Google Scholar 

  • Luna GM, Manini E, Danovaro R (2002) Large fraction of dead and inactive bacteria in coastal marine sediments: comparison of protocols for determination and ecological significance. Appl Environ Microb 68(7):3509–3513

    Article  CAS  Google Scholar 

  • Master ER, Lai VW-M, Kuipers B, Cullen WR, Mohn WW (2002) Sequential anaerobic-aerobic treatment of soil contaminated with weathered Aroclor 1260. Environ Sci Technol 36(1):100–103

    Article  CAS  Google Scholar 

  • Morse JW, Luther GW III (1999) Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim Cosmochim Acta 63(19–20):3373–3378

    Article  CAS  Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6(6):441–454

    CAS  Google Scholar 

  • Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48(1):49–64

    Article  CAS  Google Scholar 

  • Park JH, Bolan N, Megharaj M, Naidu R (2011) Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils. Sci Total Environ 409(4):853–860

    Article  CAS  Google Scholar 

  • Parker JGA (1983) A comparison of methods used for the measurement of organic matter in sediments. Chem Ecol 1(3):201–209

    Article  CAS  Google Scholar 

  • Prica M, Dalmacija B, Dalmacija M, Agbaba J, Krcmar D, Trickovic J, Karlovic E (2010) Changes in metal availability during sediment oxidation and the correlation with the immobilization potential. Ecotoxicol Environ Saf 73(6):1370–1377

    Article  CAS  Google Scholar 

  • Pusceddu A, Dell’anno A, Danovaro R, Manini E, Sarà G, Fabiano M (2003) Enzymatically hydrolyzable protein and carbohydrate sedimentary pools as indicators of the trophic state of detritus sink systems: a case study in a Mediterranean coastal lagoon. Estuaries 26(3):641–650

    Article  CAS  Google Scholar 

  • Quevauviller P (1998) Operationally defined extraction procedures for soil and sediment analysis I. Standardization. Trends Anal Chem 17(5):289–298

    Article  CAS  Google Scholar 

  • Rocchetti L, Beolchini F, Hallberg KB, Johnson DB, Dell’Anno A (2012) Effects of prokaryotic diversity changes on hydrocarbon degradation rates and metal partitioning during bioremediation of contaminated anoxic marine sediments. Mar Pollut Bull 64(8):1688–1698

    Article  CAS  Google Scholar 

  • Ronen Z, Abeliovich A (2000) Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A. Appl Environ Microbiol 66(6):2372–2377

    Article  CAS  Google Scholar 

  • Sabra N, Dubourguier H-C, Hamieh T (2012) Fungal leaching of heavy metals from sediments dredged from the Deûle canal. France Adv Chem Eng Sci 2(1):1–8

    Article  CAS  Google Scholar 

  • Schumacher BA (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments, US EPA, Ecological Risk Assessment Support Center, Office of Research and Development, Las Vegas

  • Sudhanandh VS, Udayakumar P, Ouseph PP, Amaldev S, Narendra Babu K (2011) Dispersion and accumulation trend of heavy metals in coastal and estuarine sediments and its textural characteristics, a case study in India. J Hum Ecol 36(2):85–90

    Google Scholar 

  • UNI EN 14039:2005. Characterization of waste - determination of hydrocarbon content in the range of C10 to C40 by gas chromatography

  • Van Hullebusch ED, Lens PNL, Tabak HH (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides. 3. Influence of chemical speciation and bioavailability on contaminants immobilization/mobilization bio-processes. Rev Environ Sci Biotechnol 4(3):185–212

    Article  Google Scholar 

  • Van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ (1990) Influence of interfaces on microbial activity. Microbiol Mol Biol Rev 54(1):75–87

    Google Scholar 

  • Vegliò F, Beolchini F, Nardini A, Toro L (2010) Bioleaching of a pyrrhotite ore by a sulfooxidans strain: kinetic analysis. Chem Eng Sci 55(4):783–795

    Article  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Warren LA, Haack EA (2001) Biogeochemical controls on metal behaviour in freshwater environments. Earth Sci Rev 54(4):261–320

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to appreciate all who have supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Beolchini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beolchini, F., Rocchetti, L., Fonti, V. et al. Consequences of anaerobic biotreatments of contaminated sediments on metal mobility. Int. J. Environ. Sci. Technol. 12, 2143–2152 (2015). https://doi.org/10.1007/s13762-014-0628-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0628-6

Keywords

Navigation