Skip to main content
Log in

Effect of sulphur species on the hydrocarbon biodegradation of oil sludge generated by a gas processing facility

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Oily sludge from gas processing facilities contains components that are major environmental pollutants. Biodegradation is an alternative treatment, but can be affected by other components of the sludge, such as sulphur compounds, so it is important to evaluate the effect of these on oil biodegradation in order to prevent negative impacts. This work studied the transformation of sulphur compounds in oily sludge biodegradation systems at the microcosm level. The predominant sulphur compounds in the original sludge were elemental sulphur and pyrite (9,776 and 28,705.4 mg kg−1, respectively). In the biodegradability assays, hydrocarbon concentrations decreased from 312,705.6 to 186, 760.3 mg kg−1 after 15 days of treatment. After this time, hydrocarbon degrading activity stopped, corresponding with a decrease in hydrocarbon degrading bacteria. These changes were related to a reduction in pH that inhibits biodegradation. During the assay, sulphur compounds were gradually oxidized and transformed. The concentration of sulphate increased from 5,096 to 64,868.3 mg kg−1 after 30 days in the assay, although controls were unchanged. Therefore, it is important to determine changes to the main compounds of the waste in order to assess their impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Daher R, Al-Awadhi N, Yateem A, Balba MT (2001) Compost soil piles for treatment of oil contaminated soil. Soil Sedim Contam 10(2):197–209

    Article  CAS  Google Scholar 

  • Arce OJM, Rojas ANG, Rodríguez VR (2004) Identification of recalcitrant hydrocarbons present in a drilling waste-polluted soil. J Environ Sci Health Part A 39(6):1535–1545

    Article  Google Scholar 

  • ASTM-D1552-08 (2008) Standard test method for sulfur in petroleum products (High-Temperature Method). American society for testing and materials, USA. doi:10.1520/D1552-08

  • Bacelar-Nicolau P, Johnson BD (1999) Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Appl Environ Microbiol 65(2):585–590

    CAS  Google Scholar 

  • Bahuguna A, Lily MK, Munjal A, Singh RN, Dangwal K (2011) Desulfurization of dibenzothiophene (DBT) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil. J Environ Sci 23(6):975–982

    Article  CAS  Google Scholar 

  • Balba MT, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 32:155–164

    Article  CAS  Google Scholar 

  • Bartlett JK, Skoog DA (1954) Colorimetric determination of elemental sulphur in hydrocarbons. Anal Chem 26(6):1008–1011

    Article  CAS  Google Scholar 

  • Bengtsson Å, Quednau M, Haskå G, Nilzén P, Persson A (1998) Composting of oily sludges-degradation, stabilized residues, volatiles and microbial activity. Waste Manag Res 16(3):273–284

    Article  CAS  Google Scholar 

  • Benka-Coker MO, Ekundayo JA (1998) Effects of heavy metals on growth of species of Micrococcus and Pseudomonas in a crude oil/mineral salts medium. Bioresource Technol 66(3):241–245

    Article  CAS  Google Scholar 

  • Bossert ID, Kosson DS (1997) Methods for measuring hydrocarbon biodegradation in soils. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach MV (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 738–745

    Google Scholar 

  • Bressler DC, Norman JA, Fedorak PM (1998) Ring cleavage of sulfur heterocycles: how does it happen? Biodegradation 8:297–311

    Article  CAS  Google Scholar 

  • Castorena G, Suarez C, Valdez I, Amador G, Fernández L, Borgne S (2002) Sulfur selective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus globerulus strains. FEMS 215(1):157–161

    Article  CAS  Google Scholar 

  • Chazal M, Lens PNL (2000) Interactions between the sulfur and nitrogen cycle: microbiology and process technology. In: Lens PL, Hulshoff P (eds) Environmental technologies to treat sulfur pollution principles and engineering. IWA, London

    Google Scholar 

  • Chockalingam E, Subramanian S (2006) Studies on removal of metal ions and sulphate reduction using rice husk and Desulfotomaculum nigrificans with reference to remediation of acid mine drainage. Chemosphere 62(5):699–708

    Article  CAS  Google Scholar 

  • EPA (2000) Associated waste report: dehydration and sweetening wastes. Office of solid wastes. United States Environmental Protection Agency, Washington, DC. http://www.epa.gov/osw/nonhaz/industrial/special/oil/sd.pdf

  • EPA 6010C (2007) Inductively coupled plasma-atomic emission spectrometry. United States Environmental Protection Agency, Washington, DC. http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6010c.pdf

  • Espejo RT, Escobar B, Jedlicki E, Uribe P, Badilla-Ohlbaum R (1988) Oxidation of ferrous iron and elemental sulfur by Thiobacillus ferrooxidans. Appl Environ Microbiol 54(7):1694–1699

    CAS  Google Scholar 

  • Fernández LL, Rojas AN, Roldán CT, Ramírez IM, Zegarra MH, Uribe HR, Reyes AR, Flores HD, Arce OJ (2006) Manual of soil analysis techniques applied to the remediation of contaminated sites. (Original text in Spanish). http://www2.ine.gob.mx/publicaciones/download/509.pdf

  • Ghauri MA, Okibe N, Johnson DB (2007) Attachment of acidophilic bacteria to solid surfaces: the significance of species and strain variations. Hydrometallurgy 85(2–4):72–80

    Article  CAS  Google Scholar 

  • Johnson DB (2009) Extremophiles: acidic environments. In: Schaechter M (ed) The desk encyclopedia of microbiology. Elsevier Academic Press, San Diego

    Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338(1–2):3–14

    Article  CAS  Google Scholar 

  • Kästner M, Breuer-Jammali M, Mahro B (1998) Impact of inoculation protocols, salinity, and pH on the degradation of polycyclic aromatic hydrocarbons (PAHs) and survival of PAH-degrading bacteria introduced into soil. Appl Environ Microbiol 64(1):359–362

    Google Scholar 

  • Kuenen JG, Robertson LA, Tuovinen OH (1992) The genera Thiobacillus, Thiomicrospira, and Thiosphaera. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, Berlin

    Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54(3):305–315

    CAS  Google Scholar 

  • Nava N, Sosa E, Espinosa Medina MA, Llanos ME (2006) Identification of corrosion products by Mössbauer spectroscopy (Original text in Spanish). Memorias XLI Congreso Mexicano de Química. Soc. Mex. de Química, 24–28 septiembre. http://www.quimicanuclear.org/pdf_memorias2006/simposio/NOE_%20NAVA.pdf

  • Manning FC, Thompson RE (1995) Oilfield processing, crude oil, vol 2. PennWell, Tulsa

    Google Scholar 

  • Marín JA, Moreno JL, Hernández T, García C (2006) Bioremediation by composting of heavy oil refinery sludge in semiarid conditions. Biodegradation 17(3):251–261

    Article  Google Scholar 

  • Meyer S, Steinhart H (2000) Effects of heterocyclic PAHs (N, S, O) on the biodegradation of typical tar oil PAHs in a soil/compost mixture. Chemosphere 40(4):359–367

    Article  CAS  Google Scholar 

  • Mishra S, Jyot J, Kuhad RC, Lal B (2001) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67(4):1675–1681

    Article  CAS  Google Scholar 

  • Mutai B (2009) Bioremediation of marine oil spills by hydrocarbon degrading microorganisms on laboratory-scale. In: IOC/WESTPAC international training workshop on monitoring technique and emergency response of marine oil spills, Qingdao, China, 20–23 April

  • Ouyang W, Liu H, Murygina V, Yu Y, Xiu Z, Kalyuzhnyi S (2005) Comparison of bioaugmentation and composting for remediation of oily sludge: a field-scale study in China. Process Biochem 40(12):3763–3768

    Article  CAS  Google Scholar 

  • Rawlings DE (2004) The microbially-assisted dissolution of minerals and its use in the mining industry. Pure Appl Chem 76(4):847–859

    Article  CAS  Google Scholar 

  • Rojas-Avelizapa NG, Roldán CTG, Arce OJM, Ramírez IME, Zegarra MH, Fernández LLC (2006) Enhancement of hydrocarbon removal in a clay and drilling-waste polluted soil. Soil Sediment Contam 15(4):417–428

    Article  Google Scholar 

  • Sandrin T, Maier M (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Persp 3(8):1093–1101

    Article  Google Scholar 

  • Sarioglu MS, Copty NK (2008) Modeling the enhanced bioremediation of organic contaminants in pyrite-containing aquifers. Transp Porous Med 75(2):203–221

    CAS  Google Scholar 

  • Shennan JL (1996) Microbial attack on sulphur-containing hydrocarbons: implications for the biodesulfurization of oils and coals. J Chem Technol Biotechnol 67(3):109–123

    Article  CAS  Google Scholar 

  • Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25(6):570–596

    Article  CAS  Google Scholar 

  • Sugio T, Katagiri T, Inagaki K, Tano T (1989) Actual substrate for elemental sulfur oxidation by sulfur: ferric ion oxidoreductase purified from Thiobacillus ferrooxidans. Biochim Biophys Acta 973(2):250–256

    Article  CAS  Google Scholar 

  • Suzuki I, Takeuchi TL, Yuthasastrakosol TD, Oh JK (1990) Ferrous iron and sulfur oxidation and ferric iron reduction activities of Thiobacillus ferrooxidans are affected by growth on ferrous iron, sulfur, or a sulfide ore. Appl Environ Microbiol 56(6):1620–1626

    CAS  Google Scholar 

  • Ward W, Singh A, van Hamme J (2003) Accelerated biodegradation of petroleum hydrocarbon waste. J Ind Microbiol Biotechnol 30(5):260–270

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the IMP-D.00411 Project “Alternativa potencial para tratamiento biológico y disposición final de lodos de instalaciones PGPB”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Olguín-Lora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyes-Avila, J., Roldán-Carrillo, T., Castorena-Cortés, G. et al. Effect of sulphur species on the hydrocarbon biodegradation of oil sludge generated by a gas processing facility. Int. J. Environ. Sci. Technol. 10, 551–558 (2013). https://doi.org/10.1007/s13762-013-0183-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0183-6

Keywords

Navigation