Skip to main content

Advertisement

Log in

Co-contamination of water with chlorinated hydrocarbons and heavy metals: challenges and current bioremediation strategies

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Chlorinated hydrocarbons can cause serious environmental and human health problems as a result of their bioaccumulation, persistence and toxicity. Improper disposal practices or accidental spills of these compounds have made them common contaminants of soil and groundwater. Bioremediation is a promising technology for remediation of sites contaminated with chlorinated hydrocarbons. However, sites co-contaminated with heavy metal pollutants can be a problem since heavy metals can adversely affect potentially important biodegradation processes of the microorganisms. These effects include extended acclimation periods, reduced biodegradation rates, and failure of target compound biodegradation. Remediation of sites co-contaminated with chlorinated organic compounds and toxic metals is challenging, as the two components often must be treated differently. Recent approaches to increasing biodegradation of organic compounds in the presence of heavy metals include the use of dual bioaugmentation; involving the utilization of heavy metal-resistant bacteria in conjunction with an organic-degrading bacterium. The use of zero-valent irons as a novel reductant, cyclodextrin as a complexing agent, renewable agricultural biosorbents as adsorbents, biosurfactants that act as chelators of the co-contaminants and phytoremediation approaches that utilize plants for the remediation of organic and inorganic compounds have also been reported. This review provides an overview of the problems associated with co-contamination of sites with chlorinated organics and heavy metals, the current strategies being employed to remediate such sites and the challenges involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Ghani NT, Hefny M, El-Chaghaby GAF (2007) Removal of lead from aqueous solution using low cost abundantly available adsorbents. Int. J. Environ. Sci. Tech. 4(1):67–73

    CAS  Google Scholar 

  • Addagalla VA, Naif AD, Hilal N (2009) Study of various parameters in the biosorption of heavy metals on activated sludge. World Appl Sci J 5:32–40 (Special Issue for Environment)

    Google Scholar 

  • Akporhonor EE, Egwaikhide PA (2007) Removal of selected metal ions from aqueous solution by adsorption onto chemically modified maize cobs. Sci Res Essays 2(4):132–134

    Google Scholar 

  • Alshaebi FY, Yaacob WZW, Samsuldin AR (2009) Sorption on zero -valent iron (ZVI) for arsenic removal. Eur J Sci Res 33(2):214–219

    Google Scholar 

  • Ashraf MA, Wajid A, Mahmood K (2011) Low cost biosorbent banana peel (Musa sapientum) for the removal of heavy metals. Sci Res Essays 6(19):4055–4064

    CAS  Google Scholar 

  • Azouaou N, Sadaoui Z, Mokaddem H (2008) Removal of cadmium from aqueous solution by adsorption on vegetable wastes. J Appl Sci 8(24):4638–4643

    Article  CAS  Google Scholar 

  • Baath E (1989) Effects of heavy-metals in soil on microbial processes and populations (a review). Water Air Soil Pollut 47(3–4):335–379

    Article  CAS  Google Scholar 

  • Baldrian P, Der Wiesche CI, Gabriel J, Nerud F, Zadrazil F (2000) Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol 66(6):2471–2478

    Article  CAS  Google Scholar 

  • Balestrazzi A, Bonadei M, Quattrini E, Carbonera D (2009) Occurrence of multiple metal-resistance in bacterial isolates associated with transgenic white poplars (Populus alba L.). Ann Micro 59(1):17–23

    Article  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27(2–3):355–384

    Article  CAS  Google Scholar 

  • Bhatnagar A, Vilar VJP, Botelho CMS, Boaventura RAR (2010) Coconut-based biosorbents for water treatment—a review of the recent literature. Adv Colloid Interface Sci 160:1–15

    Article  CAS  Google Scholar 

  • Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186(1):458–465

    Article  CAS  Google Scholar 

  • Borsetti F, Francia F, Turner RJ, Zannoni D (2007) The thioldisulfide oxidoreductase DsbB mediates the oxidizing effects of the toxic metalloid tellurite (TeO3 2−) on the plasma membrane redox system of the facultative phototroph Rhodobacter capsulatus. J Bacteriol 189(3):851–859

    Article  CAS  Google Scholar 

  • Boving TB, McCray JE (2000) Cyclodextrin-enhanced remediation of organic and metal contaminants in porous media and groundwater. Remed J 10(2):59–83

    Article  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207

    Article  CAS  Google Scholar 

  • Brusseau ML, Wang X, Wang W (1997) Simultaneous elution of heavy metals and organic compounds from soil by cyclodextrin. Environ Sci Tech 31(4):1087–1092

    Article  CAS  Google Scholar 

  • Cathum SJ, Boudreau A, Obenauf A, Dumouchel A, Brown CE, Punt M (2006) Treatment of mixed contamination in water using cyclodextrin-based materials. Remed J 16(4):43–56

    Article  Google Scholar 

  • Cervantes C, Espino-Saldaña AE, Acevedo-Aguilar F, León-Rodriguez IL, Rivera-Cano ME, Avila-Rodríguez M, Wróbel-Kaczmarczyk K, Wróbel-Zasada K, Gutiérrez-Corona JF, Rodríguez-Zavala JS, Moreno-Sánchez R (2006) Microbial interactions with heavy metals. Rev Latinoam Microbiol 48(2):203–210

    CAS  Google Scholar 

  • Chatain V, Hanna K, Brauer C, Bayard R, Germain P (2004) Enhanced solubilization of arsenic and 2,3,4,6 tetrachlorophenol from soils by a cyclodextrin derivative. Chemosphere 57(3):197–206

    Article  CAS  Google Scholar 

  • Chen H, Chen C, Reddy AS, Chen C, Li WR, Tseng M, Liu H, Pan W, Maity JP, Atla SB (2011) Removal of mercury by foam fractionation using surfactin, a biosurfactant. Int J Mol Sci 12(11):8245–8258

    Article  CAS  Google Scholar 

  • Cheng IF, Fernando Q, Korte N (1997) Electrochemical dechlorination of 4-chlorophenol to phenol. Environ Sci Tech 31(4):1074–1078

    Article  CAS  Google Scholar 

  • Crannell BS, Eighmy TT, Krzanowski JE, Eusden JD Jr, Shaw EL, Francis CA (2000) Heavy metal stabilization in municipal solid waste combustion bottom ash using soluble phosphate. Waste Manag 20(2–3):135–148

    Article  CAS  Google Scholar 

  • Dahrazma B, Mulligan CN (2007) Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere 69(5):705–711

    Article  CAS  Google Scholar 

  • Davis ME, Brewster ME (2004) Cyclodextrin-based pharmaceutics: past, present and future. Nat Rev Drug Discov 3(12):1023–1035

    Article  CAS  Google Scholar 

  • Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046

    Article  CAS  Google Scholar 

  • Deng N, Luo F, Wu F, Xiao M, Wum X (2000) Discoloration of aqueous reactive dye solutions in the UV/Fe0 system. Water Res 34(8):2408–2411

    Article  CAS  Google Scholar 

  • Doong RA, Lee CC, Chen KT, Wu SF (2004) Coupled reduction of chlorinated hydrocarbons and heavy metals by zerovalent silicon. Water Sci Technol 50(8):89–96

    CAS  Google Scholar 

  • Dries J, Bastiaens L, Springael D, Kuypers S, Agathos SN, Diels L (2005) Effect of humic acids on heavy metal removal by zero-valent iron in batch and continuous flow column systems. Water Res 39(15):3531–3540

    Article  CAS  Google Scholar 

  • Ehsan S, Prasher SO, Marshall WD (2007) Simultaneous mobilization of heavy metals and polychlorinated biphenyl (PCB) compounds from soil with cyclodextrin and EDTA in admixture. Chemosphere 68(1):150–158

    Article  CAS  Google Scholar 

  • Fernandes VC, Albergaria JT, Oliva-Teles T, Delerue-Matos C, De-Marco P (2009) Dual augmentation for aerobic bioremediation of MTBE and TCE pollution in heavy metal-contaminated soil. Biodegradation 20(3):375–382

    Article  CAS  Google Scholar 

  • Field JA, Sierra-Alvarez R (2004) Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Rev Environ Sci Biotechnol 3(3):185–254

    Article  CAS  Google Scholar 

  • Fierens S, Mairess H, Heilier JF, De Burbure C, Focant JF, Eppe G, De Pauw E (2003) Dioxin/polychlorinated biphenyl body burden, diabetes and endometriosis: findings in a population-based study in Belgium. Biomarkers 8(6):529–534

    Article  CAS  Google Scholar 

  • Foulkes EC (1998) Biological membranes in toxicology. Taylor & Francis, Philadelphia

    Google Scholar 

  • Franke S, Grass G, Rensing C, Nies DH (2003) Molecular analysis of the copper transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185(13):3804–3812

    Article  CAS  Google Scholar 

  • Geslin C, Llanos J, Prieur D, Jeanthon C (2001) The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Res Microbiol 152(10):901–905

    Article  CAS  Google Scholar 

  • Gheju M (2011) Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water Air Soil Pollut 222(1–4):103–148

    Article  CAS  Google Scholar 

  • Gibb C, Satapanajaru T, Comfort SD, Shea PJ (2004) Remediating dicamba-contaminated water with zerovalent iron. Chemosphere 54(7):841–848

    Article  CAS  Google Scholar 

  • Gonen F, Serin DS (2012) Adsorption study on orange peel: removal of Ni(II) ions from aqueous solution. Afr J Biotech 11(5):1250–1258

    CAS  Google Scholar 

  • Gotpagar J, Grulke E, Tsang T, Bhattacharyya D (2007) Reductive dehalogenation of trichloroethylene using zero-valent iron. Environ Progr 16(2):137–143

    Article  Google Scholar 

  • Goulhen F, Gloter A, Guyot F, Bruschi M (2006) Cr(VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies. Appl Microbiol Biotech 7(6):892–897

    Article  CAS  Google Scholar 

  • Grass G, Fan B, Rosen BP, Franke S, Nies DH, Rensing C (2001) ZitB (YbgR), a member of the cation diffusion facilitator family, is an additional zinc transporter in Escherichia coli. J Bacteriol 183(15):4664–4667

    Article  CAS  Google Scholar 

  • Gribble GW (1996) The diversity of natural organochlorines in living organisms. Pure Appl Chem 68(9):1699–1712

    Article  CAS  Google Scholar 

  • Grittini C, Malcomson M, Fernando Q, Korte N (1995) Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environ Sci Tech 29(11):2898–2900

    Article  CAS  Google Scholar 

  • Gunawardana B, Singhal N, Swedlund P (2011) Degradation of chlorinated phenols by zero valent iron and bimetals of iron: a review. Environ Eng Res 16(4):187–203

    Article  Google Scholar 

  • Hanberg A (1996) Toxicology of environmentally persistent chlorinated organic compounds. Pure Appl Chem 68(9):1791–1799

    Article  CAS  Google Scholar 

  • Hardy LI, Gillham RW (1996) Formation of hydrocarbons from the reduction of aqueous CO2 by zero-valent iron. Environ Sci Tech 30(1):57–65

    Article  CAS  Google Scholar 

  • Hazra C, Kundu D, Ghosh P, Joshi D, Dandia N, Chaudharia A (2011) Screening and identification of Pseudomonas aeruginosa AB4 for improved production, characterization and application of a glycolipid biosurfactant using low-cost agro-based raw materials. J Chem Technol Biotechnol 86(2):185–198

    Article  CAS  Google Scholar 

  • Herman DC, Artiola JF, Miller RM (1995) Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environ Sci Tech 29(9):2280–2285

    Article  CAS  Google Scholar 

  • Hileman B (1993) Concerns broaden over chlorine and chlorinated hydrocarbons. Chem Eng News 71(16):11–20

    Article  Google Scholar 

  • Hocheolsong E, Carraway R (2005) Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ Sci Tech 39(16):6237–6245

    Article  CAS  Google Scholar 

  • Hughes MN, Poole RK (1991) Metal speciation and microbial growth—the hard (and soft) facts. J Gen Microbiol 137(4):725–734

    CAS  Google Scholar 

  • Igwe JC, Abia AA (2005) Sorption kinetics and intraparticulate diffusivities of Cd, Pb and Zn ions on maize cob, Pb and Zn ions on maize cob. Afr J Biotech 4(6):509–512

    Google Scholar 

  • Igwe JC, Abia AA (2007) Studies on the effects of temperature and particle size on bioremediation of AS (III) from aqueous solution using modified and unmodified coconut fiber. Glob J Environ Res 1(1):22–26

    Google Scholar 

  • Igwe JC, Nwokennayal EC, Abia AA (2005) The role of pH in heavy metal detoxification by biosorption from aqueous solutions containing chelating agents. Afr J Biotechol 4(10):1109–1112

    CAS  Google Scholar 

  • Imagawa A, Seto R, Nagaosa Y (2000) Adsorption of chlorinated hydrocarbons from air and aqueous solutions by carbonized rice husk. Carbon 38(4):623–641

    Article  Google Scholar 

  • Inoaoka T, Matsumura Y, Tsuchido T (1999) SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtillis. J Bacteriol 181(6):1939–1943

    Google Scholar 

  • Janda V, Vasek P, Bizova J, Belohlav Z (2004) Kinetic models for volatile chlorinated hydrocarbons removal by zero-valent iron. Chemosphere 54(7):917–925

    Article  CAS  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182

    Article  Google Scholar 

  • Jeffrey WW, Silver S (1984) Bacterial resistance and detoxification of heavy metals. Enzym Microb Tech 6(12):530–537

    Article  Google Scholar 

  • Ji G, Silver S (1995) Bacterial resistance mechanism for heavy metals of environmental concern. J Ind Microbiol 14(2):61–75

    Article  CAS  Google Scholar 

  • Junyapoon S (2005) Use of zero-valent iron for wastewater treatment. KMITL Sci Tech J 5(3):587–595

    Google Scholar 

  • Khan MN, Wahab MF (2007) Characterization of chemically modified corncobs and its application in the removal of metal ions from aqueous solution. J Hazard Mater 14(1):237–244

    Article  CAS  Google Scholar 

  • Kim Y, Carraway ER (2000) Dechlorination of pentachlorophenol by zero valent iron and modified Zero valent irons. Environ Sci Tech 34(10):2014–2017

    Article  CAS  Google Scholar 

  • Kim J, Vipulanandan C (2006) Removal of lead from contaminated water and clay soil using a biosurfactant. J Environ Eng 132(7):777–786

    Article  CAS  Google Scholar 

  • Kong IC (1998) Metal toxicity on the dechlorination of monochlorophenols in fresh and acclimated anaerobic sediment slurries. Water Sci Technol 38(7):143–150

    Article  CAS  Google Scholar 

  • Kumar U, Bandyopadhyay M (2006) Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour Technol 97(1):104–109

    Article  CAS  Google Scholar 

  • Kuo C, Genthner BRS (1996) Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia. Appl Environ Microbiol 62(7):2317–2323

    CAS  Google Scholar 

  • Lasheen MR, Ammar NS, Ibrahim HS (2012) Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: equilibrium and kinetic studies. Solid State Sci 14(2):202–210

    Article  CAS  Google Scholar 

  • Lee T, Lim H, Lee Y, Park JW (2003) Use of waste iron metal for removal of Cr(VI) from water. Chemosphere 53(5):479–485

    Article  CAS  Google Scholar 

  • Lee W, Wood TK, Chen W (2006) Engineering TCE-degrading Rhizobacteria for heavy metal accumulation and enhanced TCE degradation. Biotechnol Bioeng 95(3):399–403

    Article  CAS  Google Scholar 

  • Lee SH, Lee WS, Lee CH, Kim JG (2008) Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater 153:892–898

    Google Scholar 

  • Lee KY, Strand SE, Doty SL (2012) Phytoremediation of Chlorpyrifos by Populus and Salix. Inter J Phytoremediation 14(1):48–61

    Article  Google Scholar 

  • Lehr JH, Hyman M, Gass TE, Seevers WJ (2001) Handbook of complex environmental remediation problems. McGraw-Hill, New York

    Google Scholar 

  • Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S (2009) Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J 44(1):19–41

    Article  CAS  Google Scholar 

  • Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles—a study ith high resolution X-Ray photoelectron spectroscopy (Hr-Xps). J Phys Chem 111(19):6939–6946

    CAS  Google Scholar 

  • Li Z, Tang Y, Cao X, Lu D, Luo F, Shao W (2008) Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel. Colloids Surf A Physicochem Eng Asp 317(1–3):512–521

    Article  CAS  Google Scholar 

  • Lien H, Jhuo Y, Chen L (2007) Effect of heavy metals on dechlorination of carbon tetrachloride by iron nanoparticles. Environ Eng Sci 24(1):21–30

    Article  CAS  Google Scholar 

  • Lin CJ, Lo SL, Liou YH (2004) Dechlorination of trichloroethylene in aqueous solution by noble metal-modified iron. J Hazard Mater 116(3):219–228

    Article  CAS  Google Scholar 

  • Lohmeier-Vogel EM, Ung S, Turner RJ (2004) In vivo P nuclear magnetic resonance investigation of tellurite toxicity in Escherichia coli. Appl Environ Microbiol 70(12):7342–7347

    Article  CAS  Google Scholar 

  • Lookman R, Bastiaens L, Borremans B, Maesen M, Gemoets J, Diels L (2004) Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron. J Contam Hydrol 74(1–4):133–144

    Article  CAS  Google Scholar 

  • Mahvi AH, Diels L (2004) Biological removal of cadmium by Alcaligenes eutrophus CH34. Int J Environ Sci Tech 1(3):199–204

    CAS  Google Scholar 

  • Mani D, Sharma B, Kumar C, Pathak N, Balak S (2012) Phytoremediation potential of Helianthus annuus L in sewage-irrigated indo-gangetic alluvial soils. Int J Phytoremediation 14:235–246

    Article  CAS  Google Scholar 

  • Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28(12):2045–2053

    Article  CAS  Google Scholar 

  • McEntee JD, Woodrow JR, Quirk AV (1986) Investigation of cadmium resistance in Alcaligenes sp. Appl Environ Microbiol 51(3):515–520

    CAS  Google Scholar 

  • Mergeay M (1991) Towards an understanding of the genetics of bacterial metal resistance. Trends Biotechnol 9(1):17–24

    Article  CAS  Google Scholar 

  • Misra TK (1992) Bacterial resistance to inorganic mercury salts and organomercurials. Plasmid 27(1):4–16

    Article  CAS  Google Scholar 

  • Mokhtar H, Morad N, Fizri FFA (2011) Phytoaccumulation of copper from aqueous solutions using Eichhornia crassipes and Centella asiatica. Int J Environ Sci Dev 2(3):205–210

    Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165(5):363–375

    Article  CAS  Google Scholar 

  • Mulligan CN, Wang S (2006) Remediation of a heavy metal-contaminated soil by a rhamnolipid foam. Eng Geol 85(1–2):75–81

    Article  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85(1–2):111–125

    Article  CAS  Google Scholar 

  • Murthy CVR, Ramesh P, Ramesh A (2011) Study of biosorption of Cu(II) from aqueous solutions by coconut shell powder. Chem Sci J CSJ-17

  • Namasivayam C, Kavitha D (2006) IR, XRD and SEM studies on the mechanism of adsorption of dyes and phenols by coir pith carbon from aqueous phase. Microchem J 82(1):43–48

    Article  CAS  Google Scholar 

  • Ndimele PE, Jenyo-Oni A, Jibuike CC (2009) The levels of lead (Pb) in water, sediment and a commercially important fish species (Chrysichthys nigrodigitatus) (Lacepede, 1803) from Ologe Lagoon, Lagos. Nigeria. J Environ Ext 8:70–75

    Google Scholar 

  • Nieboer M, Vis AJ, Witholt B (1996) Overproduction of a foreign membrane protein in Escherichia coli stimulates and depends on phospholipid synthesis. Eur J Biochem 241(2):691–696

    Article  CAS  Google Scholar 

  • Nies DH (2000) Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4(2):77–82

    Article  CAS  Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27(2–3):313–339

    Article  CAS  Google Scholar 

  • Ning-chuan F, Xue-yi G, Sha L (2010) Enhanced Cu(II) adsorption by orange peel modified with sodium hydroxide. Trans Nonferrous Met Soc China 20(12):146–152

    Google Scholar 

  • Nzengung VA, Wolfe LN, Rennels DE, McCutcheon SC, Wang C (1999) Use of aquatic plants and algae for decontamination of waters polluted with chlorinated alkanes. Int J Phytoremediation 1(3):203–226

    Article  CAS  Google Scholar 

  • Palmroth MRT, Pichtel J, Puhakka JA (2002) Phytoremediation of subarctic soil contaminated with diesel fuel. Bioresour Technol 84(3):221–228

    Google Scholar 

  • Pardue JH, Kongara S, Jones WJ (1996) Effect of cadmium on reductive dechlorination of trichloroaniline. Environ Toxicol Chem 15(7):1083–1088

    Google Scholar 

  • Pomposiello PJ, Demple B (2002) Global adjustment of microbial physiology during free radical stress. Adv Microb Physiol 46:319–341

    Article  CAS  Google Scholar 

  • Puls RW, Paul CJ, Powell RM (1999) The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate contaminated groundwater: a field test. Appl Geochem 14(8):989–1000

    Article  CAS  Google Scholar 

  • Rasmussen LD, Sorensen SJ, Turner RR, Barkay T (2000) Application of a merlux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32(5):639–649

    Article  CAS  Google Scholar 

  • Ravera O, Cenci R, Beon GM, Dantas M, Lodigiani P (2003) Trace element concentrations in freshwater mussels and macrophytes as related to those in their environment. J Limnol 62(1):61–70

    Article  Google Scholar 

  • Roane TM, Josephson KL, Pepper IL (2001) Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 67(7):3208–3215

    Article  CAS  Google Scholar 

  • Rouch DA, Lee BTD, Morby AP (1995) Understanding cellular responses to toxic agents: a model for mechanism choice in bacterial metal resistance. J Ind Microbiol 14(2):132–141

    Article  CAS  Google Scholar 

  • Sag Y, Kutsal T (2000) Determination of the biosorption activation energies of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Process Biochem 35(8):801–807

    Article  CAS  Google Scholar 

  • Said WA, Lewis DL (1991) Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Appl Environ Microbiol 57(5):1498–1503

    CAS  Google Scholar 

  • Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean Soil Air Water 39(8):735–741

    Article  CAS  Google Scholar 

  • Sandrin TR, Maier RM (2003) Impact of metals on the biodegradation of organic pollutants. Environ Health Perspect 111(8):1093–1101

    Article  CAS  Google Scholar 

  • Sandrin TR, Chech AM, Maier RM (2000) A rhamnolipid biosurfactant reduces cadmium toxicity during biodegradation of naphthalene. Appl Environ Microbiol 66(10):4585–4588

    Article  CAS  Google Scholar 

  • Sar A, Tuzen M (2008) Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mater 160(2–3):349–355

    Article  CAS  Google Scholar 

  • Say R, Denizli A, Aroca MY (2001) Biosorption of cadmium (II), lead (II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium. Bioresour Technol 76(1):67–70

    Article  CAS  Google Scholar 

  • Scherer J, Nies DH (2009) CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol Microbiol 73(4):601–621

    Article  CAS  Google Scholar 

  • Schiewer S, Balaria A (2009) Biosorption of Pb2+ by original and protonated citrus peels: equilibrium, kinetics, and mechanism. Chem Eng J 146(2):211–219

    Article  CAS  Google Scholar 

  • Schiewer S, Patil SB (2008) Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics. Bioresour Technol 99(6):1896–1903

    Article  CAS  Google Scholar 

  • Scott JA, Palmer SJ (1990) Sites of cadmium uptake in bacteria used for biosorption. Appl Environ Microbiol 33(2):221–225

    CAS  Google Scholar 

  • Shao-ping T, Hong W, Chun-an M, Wei-ping L (2005) Rapid dechlorination of chlorinated organic compounds by nickel/iron bimetallic system in water. J Zhejiang Univ Sci 6A(7):627–631

    Article  Google Scholar 

  • Shirdam R, Khanafari A, Tabatabaee A (2006) Cadmium, nickel and vanadium accumulation by three strains of marine bacteria. Iran J Biotechnol 4(3):180–187

    CAS  Google Scholar 

  • Shokes TE, Moller G (1999) Removal of dissolved heavy metals from acid rock drainage using iron metal. Environ Sci Technol 33(2):282–287

    Article  CAS  Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metal ions—a review. Gene 179(1):9–19

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  CAS  Google Scholar 

  • Skold EM, Thyne GD, Drexler JW, McCray JE (2007) Determining conditional stability constants for Pb complexation by carboxymethyl-β-cyclodextrin (CMCD). J Contam Hydrol 93(1–4):203–215

    Article  CAS  Google Scholar 

  • Skold EM, Thyne GD, Drexler JW, McCray JE (2009) Solubility enhancement of seven metal contaminants using carboxymethyl-β-cyclodextrin (CMCD). J Contam Hydrol 107(3–4):108–113

    Article  CAS  Google Scholar 

  • Springael D, Diels L, Hooyberghs L, Kreps S, Mergeay M (1993) Construction and characterization of heavy metal-resistant haloaromatic-degrading Alcaligenes eutrophus Strains. Appl Environ Microbiol 59(1):334–339

    CAS  Google Scholar 

  • Srivastava S, Suprasanna P, D’Souza SF (2012) Mechanisms of arsenic tolerance and detoxification in plants and their application in transgenic technology: a critical appraisal. Int J Phytoremediation 14(5):506–517

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18(2):321–336

    Article  CAS  Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour Technol 99(14):6017–6027

    Article  CAS  Google Scholar 

  • Surchi KMS (2011) Agricultural wastes as low cost adsorbents for Pb removal: kinetics, equilibrium and thermodynamics. Int J Chem 3(3):103–112

    CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011. Article ID 939161

  • Tick GR, Lourenso F, Lynnwood A, Brusseau ML (2003) Pilot-scale demonstration of cyclodextrin as a solubility-enhancement agent for remediation of a tetrachloroethene-contaminated aquifer. Environ Sci Technol 37(24):5829–5834

    Article  CAS  Google Scholar 

  • Truex MJ, Vermeul VR, Mendoza DP, Fritz BG, Mackley RD, Oostrom M, Wietsma TW, Macbeth TW (2011) Injection of zero-valent iron into an unconfined aquifer using shear-thinning fluids. Ground Water Monit. Remediat. 31(1):50–58

    Article  CAS  Google Scholar 

  • Tsutomu S, Kobayashi Y (1998) The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J Bacteriol 180(7):1655–1661

    Google Scholar 

  • Turner RJ, Aharonowitz Y, Weiner J, Taylor DE (2001) Glutathione is a target of tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can J Microbiol 47(1):33–40

    CAS  Google Scholar 

  • US Department of Defense (2004) Cyclodextrin-enhanced in situ removal of organic contaminants from groundwater at department of defense sites. Environmental Security Technology Certification Program

  • Uysal A, Turkman A (2005) Effect of biosurfactant on 2,4-dichlorophenol biodegradation in an activated sludge bioreactor. Process Biochem 40(8):2745–2749

    Article  CAS  Google Scholar 

  • Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Article  CAS  Google Scholar 

  • Vasudevan P, Padmavathy V, Dhingra SC (2003) Kinetics of biosorption of cadmium on Baker’s yeast. Bioresour Technol 89(3):281–287

    Article  CAS  Google Scholar 

  • Volesky B, May-Phillips HA (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42(5):797–806

    Article  CAS  Google Scholar 

  • Wan C, Chen YH, Wei R (1998) Dechlorination of chloromethanes on iron and palladium-iron bimetallic surface in aqueous systems. Environ Toxicol Chem 18(6):1091–1096

    Article  Google Scholar 

  • Wang X, Brusseau ML (1995) Simultaneous complexation of organic compounds and heavy metals by a modified cyclodextrin. Environ Sci Technol 29(10):2632–2635

    Article  CAS  Google Scholar 

  • Wang Y, Zhou D, Wang Y, Zhu X, Jin S (2011a) Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron. J Environ Sci 23(8):1286–1292

    Article  CAS  Google Scholar 

  • Wang C, Ma X, Walsh MP (2011b) Competitive uptake and phytomonitoring of chlorinated contaminant mixtures by Redosier Dogwood (Cornus sericea). Int J Phytoremediation 13(4):333–344

    Article  CAS  Google Scholar 

  • Wanga G, Zhoua Y, Wanga X, Chaia X, Huanga L, Dengb N (2010) Simultaneous removal of phenanthrene and lead from artificially contaminated soils with glycine- β- cyclodextrin. J Hazard Mater 184(1–3):690–695

    Article  CAS  Google Scholar 

  • Wireman J, Liebert CA, Smith T, Summers OA (1997) Population biology of the mercury resistance (mer) operon in the facultative Gram negative enteric flora of humans and other primates. Appl Environ Microbiol 63:4494–4503

    CAS  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50(6):775–780

    Article  CAS  Google Scholar 

  • Worden CR (2008) Effect of pH on cadmium toxicity and Associated gene expression in Escherichia coli. Masters thesis. The University of Wisconsin Oshkosh, Oshkosh

  • Wu L, Li Z, Han C, Liu L, Teng Y, Sun X, Pan C, Huang Y, Luo Y, Christie P (2012) Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls. Int. J. Phytoremediation. 14(6):570–584

    Article  CAS  Google Scholar 

  • Yang C, Zeng Q, Wang Y, Liao B, Sun J, Shi H, Chen X (2010) Simultaneous elution of polycyclic aromatic hydrocarbons and heavy metals from contaminated soil by two amino acids derived from β-cyclodextrins. J Environ Sci 22(12):1910–1915

    Article  CAS  Google Scholar 

  • Zannoni D, Borsetti F, Harrison JJ, Turner RJ (2007) The bacterial response to the chalcogen metalloids Se and Te. Adv Microb Physiol 53:1–71

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Olaniran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arjoon, A., Olaniran, A.O. & Pillay, B. Co-contamination of water with chlorinated hydrocarbons and heavy metals: challenges and current bioremediation strategies. Int. J. Environ. Sci. Technol. 10, 395–412 (2013). https://doi.org/10.1007/s13762-012-0122-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-012-0122-y

Keywords

Navigation