Skip to main content

Advertisement

Log in

Degradation of native wheat straw lignin by Streptomyces viridosporus T7A

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Lignin is one of the major contributing factors toward the recalcitrance of lignocellulosic biomass. Understanding the process of lignin degradation in natural biological processes will provide useful information to develop novel biomass conversion technologies. Functional group changes in the lignin entities during the process may contribute to the cellulose degradation (utilization) by the microorganisms. In this study, compositional and advanced Fourier transform infrared, pyrolysis gas chromatography/mass spectrometry and 13C cross polarization/magic angle spinning nuclear magnetic resonance analysis were performed to explore the mechanism of biodegradation of wheat straw by Streptomyces viridosporus T7A. The results indicated that S. viridosporus T7A removed lignin and hemicelluloses as indicated by the increased carbohydrate/lignin ratio. Significant modification of carbonyl and methoxyl groups in the complex lignin structure was also evident. Most importantly, the quantitative results showed that lignin degradation was featured by deduction of guaiacyl unit. The results provide new insight for understanding lignin degradation by bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almendros G, Martinez AT, Gonzalez AE, Gonzalez-Vila FJ, Fruend R, Luedemann HD (1992) CPMAS carbon-13 NMR study of lignin preparations from wheat straw transformed by five lignocellulose-degrading fungi. J Agric Food Chem 40:1297–1302

    Article  CAS  Google Scholar 

  • Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Product Rep 28:1883–1896

    Article  CAS  Google Scholar 

  • Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crops Prod 28:237–259

    Article  CAS  Google Scholar 

  • Buta JG, Zadrazil F, Galletti GC (1989) FT-IR determination of lignin degradation in wheat straw by white rot fungus Stropharia rugosoannulata with different oxygen concentrations. J Agric Food Chem 37:1382–1384

    Article  CAS  Google Scholar 

  • Camarero S, Galletti GC, Martinez AT (1994) Preferential degradation of phenolic lignin units by two white rot fungi. Appl Environ Microbiol 60:4509

    CAS  Google Scholar 

  • Chen CL, Chang HM, Kirk TK (1983) Carboxylic acids produced through oxidative cleavage of aromatic rings during degradation of lignin in spruce wood by Phanerochaete chrysosporium. J Wood Chem Technol 3:35–57

    Article  Google Scholar 

  • Chen S, Zhang X, Singh D, Yu H, Yang X (2010) Biological pretreatment of lignocellulosics: potential, progress and challenges. Biofuels 1:177–199

    Article  CAS  Google Scholar 

  • Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Ann Rev Chem Biomol Eng 2:121–145

    Article  CAS  Google Scholar 

  • Crawford DL (1978) Lignocellulose decomposition by selected streptomyces strains. Appl Environ Microbiol 35:1041

    CAS  Google Scholar 

  • Crawford DL, Ramachandra M (1993) Bacterial extracellular lignin peroxidase. US Patent 5,200,338

  • Crawford DL, Pometto Iii AL, Crawford RL (1983) Lignin degradation by Streptomyces viridosporus: isolation and characterization of a new polymeric lignin degradation intermediate. Appl Environ Microbiol 45:898

    CAS  Google Scholar 

  • Decker SR, Adney WS, Jennings E, Vinzant TB, Himmel ME (2003) Automated filter paper assay for determination of cellulase activity. Appl Biochem Biotechnol 107:689–703

    Article  Google Scholar 

  • Deobald LA, Crawford DL (1989) Lignin biotransformations by an aromatic aldehyde oxidase produced by Streptomyces viridosporus T7A. Appl Biochem Biotechnol 20:153–163

    Article  Google Scholar 

  • Faix O, Bottcher JH (1992) The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood. Eur J Wood Wood Prod 50:221–226

    Article  CAS  Google Scholar 

  • Gilardi G, Abis L, Cass AEG (1995) Carbon-13 CP/MAS solid-state NMR and FT-IR spectroscopy of wood cell wall biodegradation. Enzyme Microbial Technol 17:268–275

    Article  CAS  Google Scholar 

  • Green F, Highley TL (1997) Mechanism of brown-rot decay: paradigm or paradox. Int Biodeterior Biodegrad 39:113–124

    Article  CAS  Google Scholar 

  • Hernández-Coronado MJ, Hernández M, Centenera F, Pérez-Leblic MI, Ball AS, Arias ME (1997) Chemical characterization and spectroscopic analysis of the solubilization products from wheat straw produced by Streptomyces strains grown in solid-state fermentation. Microbiology 143:1359

    Article  Google Scholar 

  • Hernandez-perez G, Goma G, Rols JL (1998a) Biodegradability of lignosulphonate by Streptomyces viridosporus strain T7A and a mixed natural microbial population antagonistic effects. Acta Biotechnol 18:85–91

    Article  CAS  Google Scholar 

  • Hernandez-Perez G, Goma G, Rols JL (1998b) Enhanced degradation of lignosulfonated compounds by Streptomyces viridosporus. Water Sci Technol 38:289–297

    Article  CAS  Google Scholar 

  • Hernandez-Perez G, Goma G, Rols JL (1999) Degradation of lignosulfonated compounds by Streptomyces viridosporus: effect of the culture medium and the nature of the lignosulfonate molecule. Water Res 33:1837–1844

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804

    Article  CAS  Google Scholar 

  • Iiyama K, Wallis AFA (1988) An improved acetyl bromide procedure for determining lignin in woods and wood pulps. Wood Sci Technol 22:271–280

    Google Scholar 

  • Iiyama K, Wallis AFA (1990) Determination of lignin in herbaceous plants by an improved acetyl bromide procedure. J Sci Food Agric 51:145–161

    Google Scholar 

  • Kirk TK, Highley TL (1973) Quantitative changes in structural components of conifer woods during decay by white- and brown-rot fungi. Phytopathology 63:1338–1342

    Article  CAS  Google Scholar 

  • Kristensen JB, Bojesson J, Bruun MH, Tjerneld F, Jogensen H (2007) Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme and Microbial Technology 40:888–895

    Article  CAS  Google Scholar 

  • Lapierre C, Monties B, Rolando C (1988) Thioacidolyses of diazomethane-methylated pine compression wood and wheat straw in situ lignins. Holzforschung 42:409–411

    Article  CAS  Google Scholar 

  • Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho NS, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185

    Article  CAS  Google Scholar 

  • Li X, Ximenes E, Kim Y, Slininger M, Meilan R, Ladisch M, Chapple C (2010) Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnol Biofuels 3:27

    Article  CAS  Google Scholar 

  • Lin SY, Dence CW (1992) Methods in lignin chemistry., Springer series in wood scienceSpringer, Berlin

    Book  Google Scholar 

  • Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71:1–15

    Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  • Odier E, Artaud I, Winkelmann G (1992) Degradation of lignin. In: Winkelmann G (ed) Microbial degradation of natural products. VCH Press, Weinheim, pp 161–191

  • Pan X (2008) Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J Biobased Mat Bioener 2:25–32

    Article  Google Scholar 

  • Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeterior Biodegradation 52:151–160

    Article  CAS  Google Scholar 

  • Phelan MB, Crawford DL, Pometto AL III (1979) Isolation of lignocellulose-decomposing actinomycetes and degradation of specifically 14C-labeled lignocelluloses by six selected Streptomyces strains. Can J Microbiol 25:1270–1276

    Google Scholar 

  • Ramachandran S, Magnuson TS, Crawford DL (2000) Isolation and analysis of three peroxide sensor regulatory gene homologs ahpC, ahpX and oxyR in Streptomyces viridosporus T7A—a lignocellulose degrading actinomycete. Mitochondrial DNA 11:51–60

    Article  CAS  Google Scholar 

  • Rodriguez J, Hernández-Coronado MJ, Hernandez M, Bocchini P, Galletti GC, Arias ME (1997) Chemical characterization by pyrolysis/gas chromatography/mass spectrometry of acid-precipitable polymeric lignin (APPL) from wheat straw transformed by selected Streptomyces strains. Anal Chim Acta 345:121–129

    Article  CAS  Google Scholar 

  • Singh D, Zeng J, Laskar DD, Deobald L, Hiscox WC, Chen S (2011) Investigation of wheat straw biodegradation by Phanerochaete chrysosporium. Biomass Bioenergy 35:1030–1040

    Article  CAS  Google Scholar 

  • Spiker JK, Crawford DL, Thiel EC (1992) Oxidation of phenolic and non-phenolic substrates by the lignin peroxidase of Streptomyces viridosporus T7A. Appl Microbiol Biotechnol 37:518–523

    Article  CAS  Google Scholar 

  • Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2010) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci 108:6300–6305

    Google Scholar 

  • Sun XF, Sun RC, Fowler P, Baird MS (2005) Extraction and characterization of original lignin and hemicelluloses from wheat straw. J Agric Food Chem 53:860–870

    Article  CAS  Google Scholar 

  • Tien M, Kirk T (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc of the Natl Acad Sci USA 81:2280

    Google Scholar 

  • Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2011) Deactivation of cellulases by phenols. Enzyme Microbial Technol 48:54–60

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611–617

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Biorefin 2:26–40

    Article  CAS  Google Scholar 

  • Yee DC, Wood TK (1997) 2, 4 dichlorophenol degradation using Streptomyces viridosporus T7A lignin peroxidase. Biotechnol Prog 13:53–59

    Article  CAS  Google Scholar 

  • Zeng J, Singh D, Chen S (2010) Biological pretreatment of wheat straw by Phanerochaete chrysosporium supplemented with inorganic salts. Biores Technol 102:3206–3214

    Google Scholar 

  • Zeng J, Singh D, Chen S (2011) Thermal decomposition kinetics of wheat straw treated by Phanerochaete chrysosporium. Int Biodeter Biodegrad 65:410–414

    Google Scholar 

  • Zimbardi F, Viggiano D, Nanna F, Demichele M, Cuna D, Cardinale G (1999) Steam explosion of straw in batch and continuous systems. Appl Biochem Biotechnol 77:117–125

    Article  Google Scholar 

Download references

Acknowledgments

Authors also would like to thank Dr. Lee Deobald, University of Idaho for kindly providing the S. viridosporus T7A strain for the study and Allan Gao, Dr. Jim O’Fallon for their sincere help in this manuscript. The Nuclear Magnetic Resonance center, Washington State University, is gratefully acknowledged for providing NMR facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, J., Singh, D., Laskar, D.D. et al. Degradation of native wheat straw lignin by Streptomyces viridosporus T7A. Int. J. Environ. Sci. Technol. 10, 165–174 (2013). https://doi.org/10.1007/s13762-012-0085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-012-0085-z

Keywords

Navigation