Skip to main content

Advertisement

Log in

The Causality Horizon and the Developmental Bases of Morphological Evolution

  • Thematic Issue Article: Emergence of Shape
  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

With the advent of evolutionary developmental research, or EvoDevo, there is hope of discovering the roles that the genetic bases of development play in morphological evolution. Studies in EvoDevo span several levels of organismal organization. Low-level studies identify the ultimate genetic changes responsible for morphological variation and diversity. High-level studies of development focus on how genetic differences affect the dynamics of gene networks and epigenetic interactions to modify morphology. Whereas an increasing number of studies link independent acquisition of homoplastic or convergent morphologies to similar changes in the genomes, homoplasies are not always found to have identical low-level genetic underpinnings. This suggests that a combination of low- and high-level approaches may be useful in understanding the relationship between genetic and morphological variation. Therefore, as an empirical and conceptual framework, we propose the causality horizon to signify the lowest level that allows linking homoplastic morphologies to similar changes in the development. A change in a system below the causality horizon cannot be generalized. In more concrete terms, homoplastic morphologies cannot be reduced to the same change in gene regulation when that change occurs below the causality horizon; rather, a higher-level mechanism should be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abouheif E, Wray GA (2002) Evolution of the gene network underlying wing polyphenism in ants. Science 297:249–252

    Article  Google Scholar 

  • Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ (2004) Bmp4 and morphological variation of beaks in Darwin’s finches. Science 305:1462–1465

    Article  Google Scholar 

  • Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ (2006) The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature 442:563–567

    Article  Google Scholar 

  • Akam M (1998) Hox genes: from master genes to micromanagers. Curr Biol 8:R676–R678

    Article  Google Scholar 

  • Alberch P (1982) Developmental constraints in evolutionary processes. In: Bonner JT (ed) Evolution and development. Dahlem Konferenzen. Springer, Heidelberg, pp 313–332

    Chapter  Google Scholar 

  • Atchley WR (1987) Developmental quantitative genetics and the evolution of ontogenies. Evolution 41:316–330

    Article  Google Scholar 

  • Barton N, Partridge L (2000) Limits to natural selection. BioEssays 22:1075–1084

    Article  Google Scholar 

  • Beloussov LV (1998) The dynamic architecture of a developing organism: an interdisciplinary approach to the development of organisms. Kluwer, Dordrecht

    Book  Google Scholar 

  • Carroll SB, Grenier JK, Weatherbee SD (2001) From DNA to diversity: molecular genetics and the evolution of animal design. Blackwell, Malden

    Google Scholar 

  • Charlesworth B, Lande R (1982) Morphological stasis and developmental constraint–no problem for Neo-Darwinism. Nature 296:610

    Article  Google Scholar 

  • Collier JR, Monk NA, Maini PK, Lewis JH (1996) Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. J Theor Biol 183:429–446

    Article  Google Scholar 

  • Coyne JA (2006) Comment on “Gene regulatory networks and the evolution of animal body plans.” Science 313:761

    Article  Google Scholar 

  • DeFaveri J, Shikano T, Shimada Y, Goto A, Merilä J (2011) Global analysis of genes involved in freshwater adaptation in threespine sticklebacks (Gasterosteus aculeatus). Evolution 65:1800–1807

    Article  Google Scholar 

  • Dworkin I, Gibson G (2006) Epidermal growth factor receptor and transforming growth factor-beta signaling contributes to variation for wing shape in Drosophila melanogaster. Genetics 173:1417–1431

    Article  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Google Scholar 

  • Frankel N, Erezyilmaz DF, McGregor AP, Wang S, Payre F, Stern DL (2011) Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. Nature 474:598–603

    Article  Google Scholar 

  • Gehring WJ (1993) Exploring the homeobox. Gene 135:215–221

    Article  Google Scholar 

  • Gibson G, Hogness DS (1996) Effect of polymorphism in the Drosophila regulatory gene Ultrabithorax on homeotic stability. Science 271:200–203

    Article  Google Scholar 

  • Gilbert SF, Sarkar S (2000) Embracing complexity: organicism for the 21st century. Dev Dyn 219:1–9

    Article  Google Scholar 

  • Gong Z, Matzke NJ, Ermentrout B, Song D, Vendetti JE, Slatkin M, Oster G (2012) Evolution of patterns on Conus shells. Proc Natl Acad Sci USA 109:E234–E241

    Article  Google Scholar 

  • Goodwin BC (1994) How the leopard changed its spots. Weidenfeld and Nicolson, London

    Google Scholar 

  • Haldane JBS (1932) The causes of evolution. Longmans, London. Reprint: Princeton University Press, Princeton (1990)

  • Hallgrímsson B, Brown JJY, Hall BK (2005) The study of phenotypic variability: an emerging research agenda for understanding the developmental-genetic architecture underlying phenotypic variation. In: Hallgrímsson B, Hall BK (eds) Variation: a central concept in biology. Academic Press, New York, pp 525–551

    Google Scholar 

  • Harjunmaa E, Kallonen A, Voutilainen M, Hämäläinen K, Mikkola ML, Jernvall J (2012) On the difficulty of increasing dental complexity. Nature 483:324–327

    Article  Google Scholar 

  • Harris MP, Williamson S, Fallon JF, Meinhardt H, Prum RO (2005) Molecular evidence for an activator-inhibitor mechanism in development of embryonic feather branching. Proc Natl Acad Sci USA 102:11734–11739

    Article  Google Scholar 

  • Janssens H, Hou S, Jaeger J, Kim AR, Myasnikova E, Sharp D, Reinitz J (2006) Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene. Nat Genet 38:1159–1165

    Article  Google Scholar 

  • Jeffery WR (2009) Regressive evolution in Astyanax cavefish. Annu Rev Genet 43:25–47

    Article  Google Scholar 

  • Knecht AK, Hosemann KE, Kingsley DM (2007) Constraints on utilization of the EDA-signaling pathway in threespine stickleback evolution. Evol Dev 9:141–154

    Article  Google Scholar 

  • Leinonen T, McCairns RJS, Herczeg G, Merilä J (2012) Multiple evolutionary pathways to decreased lateral plate coverage in freshwater threespine sticklebacks. Evolution 66:3866–3875

    Article  Google Scholar 

  • Marcellini S, Simpson P (2006) Two or four bristles: functional evolution of an enhancer of scute in Drosophilidae. PLoS Biol 4:2252–2261

    Article  Google Scholar 

  • Marcucio RS, Young NM, Hu D, Hallgrimsson B (2011) Mechanisms that underlie co-variation of the brain and face. Genesis 49:177–189

    Article  Google Scholar 

  • Meinhardt H (1982) Models of biological pattern formation. Academic Press, London

    Google Scholar 

  • Mezey JG, Houle D, Nuzhdin SV (2005) Naturally segregating quantitative trait loci affecting wing shape of Drosophila melanogaster. Genetics 169:2101–2113

    Article  Google Scholar 

  • Moreira J, Deutsch A (2005) Pigment pattern formation in zebrafish during late larval stages: a model based on local interactions. Dev Dyn 232:33–42

    Article  Google Scholar 

  • Nakamasu A, Takahashi G, Kanbe A, Kondo S (2009) Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proc Natl Acad Sci USA 106:8429–8434

    Article  Google Scholar 

  • Nebot A, Medina S, Cellier FE (1994) The causality horizon: limitations to predictability of behavior using fuzzy inductive reasoning. Proc Conf Model Simul 3:492–496

    Google Scholar 

  • Newman SA, Comper WD (1990) “Generic” physical mechanisms of morphogenesis and pattern formation. Development 110:1–18

    Google Scholar 

  • Newman SA, Müller GB (2005) Origination and innovation in the vertebrate limb skeleton: an epigenetic perspective. J Exp Zool B Mol Dev Evol 304:593–609

    Article  Google Scholar 

  • Nijhout HF (1990) Metaphors and the role of genes in development. BioEssays 12:441–446

    Article  Google Scholar 

  • Palsson A, Gibson G (2000) Quantitative developmental genetic analysis reveals that the ancestral dipteran wing vein prepattern is conserved in Drosophila melanogaster. Dev Genes Evol 210:617–622

    Article  Google Scholar 

  • Pennisi E (2002) Evolutionary biology: evo-devo enthusiasts get down to details. Science 298:953–955

    Article  Google Scholar 

  • Plikus MV, Zeichner-David M, Mayer JA, Reyna J, Bringas P, Thewissen JG, Snead ML, Chai Y, Chuong CM (2005) Morphoregulation of teeth: modulating the number, size, shape and differentiation by tuning Bmp activity. Evol Dev 7:440–457

    Article  Google Scholar 

  • Prum RO (2005) Evolution of the morphological innovations of feathers. J Exp Zool B Mol Dev Evol 304:570–579

    Article  Google Scholar 

  • Rebeiz M, Pool JE, Kassner VA, Aquadro CF, Carroll SB (2009) Stepwise modification of a modular enhancer underlies adaptation in a Drosophila population. Science 326:1663–1667

    Article  Google Scholar 

  • Salazar-Ciudad I (2006) Developmental constraints versus variational properties: how pattern formation can help to understand evolution and development. J Exp Zool B Mol Dev Evol 306:107–125

    Article  Google Scholar 

  • Salazar-Ciudad I (2008) Tooth morphogenesis in vivo, in vitro, and in silico. Curr Top Dev Biol 81:341–371

    Article  Google Scholar 

  • Salazar-Ciudad I (2009) Looking at the origin of phenotypic variation from pattern formation gene networks. J Biosci 34:573–587

    Article  Google Scholar 

  • Salazar-Ciudad I, Jernvall J (2002) A gene network model accounting for development and evolution of mammalian teeth. Proc Natl Acad Sci USA 99:8116–8120

    Article  Google Scholar 

  • Salazar-Ciudad I, Jernvall J (2010) A computational model of teeth and the developmental origins of morphological variation. Nature 464:583–586

    Article  Google Scholar 

  • Salazar-Ciudad I, Jernvall J, Newman SA (2003) Mechanisms of pattern formation in development and evolution. Development 130:2027–2037

    Article  Google Scholar 

  • Sheth R, Marcon L, Bastida MF, Junco M, Quintana L, Dahn R, Kmita M, Sharpe J, Ros MA (2012) Hox genes regulate digit patterning by controlling the wavelength of a turing-type mechanism. Science 338:1476–8140

    Article  Google Scholar 

  • Shvartsman SY, Muratov CB, Lauffenburger DA (2002) Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis. Development 129:2577–2589

    Google Scholar 

  • True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3:109–119

    Article  Google Scholar 

  • von Dassow M, Davidson LA (2007) Variation and robustness of the mechanics of gastrulation: the role of tissue mechanical properties during morphogenesis. Birth Defects Res C Embryo Today 81:253–269

    Article  Google Scholar 

  • Weiss K, Fullerton SM (2000) Phenogenetic drift and the evolution of genotype–phenotype relationships. Theor Popul Biol 57:187–195

    Article  Google Scholar 

  • Wu P, Jiang TX, Shen JY, Widelitz RB, Chuong CM (2006) Morphoregulation of avian beaks: comparative mapping of growth zone activities and morphological evolution. Dev Dyn 235:1400–1412

    Article  Google Scholar 

Download references

Acknowledgments

We thank Jeffrey Schwartz for providing a forum to develop ideas presented in the article, and David Polly and Kate MacCord for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Jernvall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar-Ciudad, I., Jernvall, J. The Causality Horizon and the Developmental Bases of Morphological Evolution. Biol Theory 8, 286–292 (2013). https://doi.org/10.1007/s13752-013-0121-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13752-013-0121-3

Keywords

Navigation