Skip to main content

Advertisement

Log in

Why are There No Eusocial Fishes?

  • Long Article
  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

Eusociality is the form of animal social organization with a reproductive division of labor, most prominently known from ants and bees. Here I ask the question why this enormously successful form of social organization is missing in the largest and most diverse group of vertebrates, the teleost fishes. I first briefly review the phylogenetic distribution and likely evolutionary origins of eusociality. Then, after an equally very brief review of the diverse life history strategies of teleosts, I conclude that it is not the lack of evolutionary pre-adaptations which is keeping teleosts from becoming eusocial. Rather, I argue, that the absence of eusocial fish is caused by a number of differences between aquatic (chiefly marine) and terrestrial ecosystems: (1) Greater offspring dispersal in aquatic ecosystems reduces the role of kin-selection. (2) Lesser predictability of the environment at larger timescales in marine ecosystems disfavors eusociality. (3) A briefer impact of resource pulses in aquatic ecosystems will cause less evolutionary pressure towards cooperation, and eventually eusociality. Finally, I conclude by predicting that the most likely places to find eusocial fishes will be the deep-water regions of the ocean and the African rift lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander RD, Noonan KM, Crespi B (1991) The evolution of eusociality. In: Sherman PW, Jarvis J, Alexander RD (eds) The Biology of the naked mole rat. Princeton University Press, Princeton

    Google Scholar 

  • Bergmüller R, Johnstone RA, Russell AF, Bshary R (2007) Integrating cooperative breeding into theoretical concepts of cooperation. Behav Processes 76:61–72

    Google Scholar 

  • Boomsma JJ (2007) Kin selection versus sexual selection: why the ends do not meet. Current Biol 17(16):R673–R683

    Google Scholar 

  • Boomsma JJ, Beekman M, Cornwallis CK, Griffin AS, Holman L, Hughes WO, Keller L, Oldroyd BP, Ratnieks FL (2011) Only full-sibling families evolved eusociality. Nature 471(7339):E4–E5

    Google Scholar 

  • Bourke AFG (2011) Principles of Social Evolution, 1st edn. Oxford University Press, USA

    Google Scholar 

  • Brown GE, Brown JA (1996) Kin discrimination in salmonids. Rev Fish Biol Fisheries 6(2):201–219

    Article  Google Scholar 

  • Bruintjes R, Taborsky M (2011) Size-dependent task specialization in a cooperative cichlid in response to experimental variation of demand. Anim Behav 81(2):387–394

    Article  Google Scholar 

  • Burland TM, Bennett NC, Jarvis JUM, Faulkes CG (2002) Eusociality in African Mole-rats: new insights from patterns of genetic relatedness in the Damaraland mole-rat (Cryptomys Damarensis). Proceedings of the Royal Society of London. Series B: biological sciences, 269(1495):1025–1030, 22 May 2002

  • Carr Mark H, Neigel JE, Estes JA, Andelman S, Warner RR, Largier JL (2003) Comparing marine and terrestrial ecosystems: implications for the design of coastal marine reserves. Ecol Appl 13(1):S90–S107

    Article  Google Scholar 

  • Crespi BJ (1994) Three conditions for the evolution of eusociality: are they sufficient? Insectes Soc 41(4):395–400

    Article  Google Scholar 

  • Crow KD, Stadler PF, Lynch VJ, Amemiya C, Wagner GP (2006) The “fish-specific” hox cluster duplication is coincident with the origin of teleosts. Mol Biol Evol 23(1):121–136

    Article  Google Scholar 

  • Crozier RH (2008) Advanced eusociality, kin selection and male haploidy. Aust J Entomology 47(1):2–8

    Article  Google Scholar 

  • Duffy JE (1996) Eusociality in a coral-reef shrimp. Nature 381(6582):512–514

    Article  Google Scholar 

  • Duffy JE (2002) The ecology and evolution of eusociality in sponge-dwelling shrimp. In: Kikuchi T (ed) Genes, behavior, and evolution in social insects. University of Hokkaido Press, Sapporo

    Google Scholar 

  • Duffy JE, Macdonald KS (2010) Kin structure, ecology and the evolution of social organization in shrimp: a comparative analysis. Proceedings of the Royal Society B: Biological Sciences, 277(1681):575–584, 22 Feb 2010

  • Froese R, Pauly D (2002) FishBase. World Wide Web electronic publication. www.fishbase.org. Accessed 1 June 2012

  • Fromhage L, Kokko H (2011) Monogamy and haplodiploidy act in synergy to promote the evolution of eusociality. Nature Commun 2:397

    Article  Google Scholar 

  • Gardner A, Alpedrinha J, West Stuart A (2012) Haplodiploidy and the evolution of eusociality: split sex ratios. Am Nat 179(2):240–256

    Article  Google Scholar 

  • Goodwin NB, Dulvy NK, Reynolds JD (2002) Life-history correlates of the evolution of live bearing in fishes. Philos Trans R Soc B Biol Sci 357(1419):259–267

    Article  Google Scholar 

  • Grutter, Alexandra, Cribb, Thomas, Fargher, Bronwyn, Kuris, Armand, McCormick, Mark Robert Warner, Robert (2012) The larval fish pelagic phase: a sanctuary from harmful parasites?. In: Abstracts of the international coral reef symposium, Cairns, 2012

  • Hamilton WD (1964a) The genetical evolution of social behaviour. I. J Theor Biol 7(1):1–16

    Article  Google Scholar 

  • Hamilton WD (1964b) The genetical evolution of social behaviour. II. J Theor Biol 7(1):17–52

    Article  Google Scholar 

  • Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31(2):295–311

    Article  Google Scholar 

  • Hughes WOH, Oldroyd BP, Beekman M, Ratnieks FLW (2008) Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320(5880):1213–1216

    Article  Google Scholar 

  • Jarvis JU (1981) Eusociality in a mammal: cooperative breeding in naked mole-rat colonies. Science 212(4494):571–573

    Article  Google Scholar 

  • Jeanson R, Kukuk PF, Fewell JH (2005) Emergence of division of labour in halictine bees: contributions of social interactions and behavioural variance. Animal Behav 70(5):1183–1193

    Article  Google Scholar 

  • Keller L, Nicolas P (1995) Quantifying the level of eusociality. Proceedings: biological sciences, 260(1359):311–315, 22 Jun 1995

  • Lehmann L, Rousset F (2010) How life history and demography promote or inhibit the evolution of helping behaviours. Philosophical transactions of the Royal Society B: biological sciences 365(1553):2599–2617, 12 Sep 2010

    Google Scholar 

  • Malte A (1984) The evolution of eusociality. Annu Rev Ecol Syst 15:165–189

    Google Scholar 

  • Mann KD, Turnell ER, Atema J, Gerlach G (2003) Kin recognition in juvenile zebrafish (Danio rerio) based on olfactory cues. Biol Bull 205(2):224–225

    Article  Google Scholar 

  • Neafsey DE, Palumbi SR (2003) Genome size evolution in pufferfish: a comparative analysis of diodontid and tetraodontid pufferfish genomes. Genome Res 13(5):21–830

    Article  Google Scholar 

  • Nowak MA, Tarnita CE, Wilson EO (2010) The evolution of eusociality. Nature 466(7310):1057–1062

    Article  Google Scholar 

  • Nowlin WH, Vanni MJ, Yang LH (2008) Comparing resource pulses in aquatic and terrestrial ecosystems. Ecology 89(3):647–659

    Article  Google Scholar 

  • Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. In: Proceedings of the National Academy of Sciences 106(14):5693–5697, 7 Apr 2009

  • Queller DC (1994) Genetic relatedness in viscous populations. Evol Ecol 8(1):70–73

    Article  Google Scholar 

  • Queller DC (1989) The evolution of eusociality: reproductive head starts of workers. In: Proceedings of the National Academy of Sciences, 86(9):3224–3226, 1 May 1989

  • Ralph B, Johnstone RA, Russell AF, Bshary R (2007) Integrating cooperative breeding into theoretical concepts of cooperation. Behav Process 76(2):61–72

    Article  Google Scholar 

  • Robertson DR (1973) Field observations on the reproductive behaviour of a pomacentrid fish, Acanthochromis polyacanthus. Zeitschrift Für Tierpsychologie 32(3):319–324

    Article  Google Scholar 

  • Siegel DA, Mitarai S, Costello CJ, Gaines SD, Kendall BE, Warner RR, and Winters KB (2008) The stochastic nature of larval connectivity among nearshore marine populations. Proceedings of the National Academy of Sciences, 105(26):8974–8979, 1 July 2008

    Google Scholar 

  • Smith CR, Baco AR (2003) Ecology of whale falls at the deep-sea floor. In: Oceanography and marine biology: an annual review, vol 41, pp 311–354

  • Spanier E, Cobb JS, James M-J (1993) Why are there no reports of eusocial marine crustaceans? Oikos 67(3):573–576

    Article  Google Scholar 

  • Steele John H (1985) A comparison of terrestrial and marine ecological systems. Nature 313(6001):355–358

    Article  Google Scholar 

  • Taborsky M (1994) Sneakers, satellites, and helpers: parasitic and cooperative behavior in fish reproduction. In: Advances in the study of behavior, vol 23. Academic Press, London, pp 1–100

  • Thorne BL (1997) Evolution of eusociality in termites. Annu Rev Ecol Syst 28:27–54

    Article  Google Scholar 

  • Vasseur DA, Yodzis P (2004) The color of environmental noise. Ecology 85(4):1146–1152

    Article  Google Scholar 

  • Vollrath F (1986) Eusociality and extraordinary sex ratios in the spider Anelosimus eximius (Araneae: theridiidae). Behav Ecol Sociobiol 18(4):283–287

    Article  Google Scholar 

  • Wade MJ (2001) Maternal gene effects and the evolution of sociality in haplo-diploid organisms. Evolution 55(3):453–458

    Article  Google Scholar 

  • Warner RR (1975) The adaptive significance of sequential hermaphroditism in animals. Am Nat 109(965):61–82

    Article  Google Scholar 

  • Warner RR, Swearer SE (1991) Social control of sex change in the bluehead wrasse, Thalassoma bifasciatum (Pisces: Labridae). Biol Bulletin 181(2):199–204

    Article  Google Scholar 

  • Watson JR, Mitarai S, Siegel DA, Caselle JE, Dong C, McWilliams JC (2010) Realized and potential larval connectivity in the Southern California Bight. Mar Ecol Prog Ser 401:31–48

    Article  Google Scholar 

  • Wcislo WT (1997) Social interactions and behavioral context in a largely solitary bee, Lasioglossum (Dialictus) (Hymenoptera, Halictidae). Insectes Soc 44(3):199–208

    Article  Google Scholar 

  • West SA, Griffin AS, Gardner A (2007) Evolutionary explanations for cooperation. Curr Biol 17(16):R661–R672

    Article  Google Scholar 

  • Whiteman EA, Côté IM (2004) Monogamy in marine fishes. Biol Rev 79(2):351–375

    Article  Google Scholar 

  • Wilson EO (1971) The Insect Societies. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Wilson EO (2008) One giant leap: how insects achieved altruism and colonial life. Bioscience 58(1):17–25

    Article  Google Scholar 

  • Wilson EO, Hölldobler B (2005) Eusociality: origin and consequences. Proceedings of the National Academy of Sciences of the United States of America. 102(38):13367–13371, 20 Sep 2005

  • Wong M, Balshine S (2011) The evolution of cooperative breeding in the African cichlid fish, Neolamprologus pulcher. Biol Rev 86(2):511–530

    Article  Google Scholar 

Download references

Acknowledgments

I thank Drs. Robert R. Warner and Sasha Mikheyev for helpful discussion and the reviewers of the first version of this manuscript for valuable input and pointers to relevant literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus M. Stiefel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiefel, K.M. Why are There No Eusocial Fishes?. Biol Theory 7, 204–210 (2013). https://doi.org/10.1007/s13752-012-0059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13752-012-0059-x

Keywords

Navigation