Skip to main content
Log in

Characterizing Animal Development with Genetic Regulatory Mechanisms

  • Original Paper
  • Published:
Biological Theory Aims and scope Submit manuscript

Abstract

Although developmental biology is an institutionalized discipline, no unambiguous account of what development is and when it stops has so far been provided. In this article, I focus on two sets of developmental molecular mechanisms, namely those underlying the heterochronic pathway in C. elegans and those involving Hox genes in vertebrates, to suggest a conceptual account of animal development. I point out that, in these animals, the early stages of life exhibit salient mechanistic features, in particular in the way mechanisms of genetic regulation occur in the organism. Indeed, these stages are characterized by sequential and irreversible changes in gene expression taking place throughout the organism. A general definition of animal development based on these distinctive features implies that, at least for some animal species, development does not go on throughout the life of the animal, contrary to what has recently been claimed by some biologists and philosophers. Instead, in such species, development encompasses various events occurring sequentially at the beginning of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambros V, Horvitz HR (1984) Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226:409–416

    Article  Google Scholar 

  • Beckstead RB, Lam G, Thummel CS (2005) The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis. Genome Biol 6:R99

    Article  Google Scholar 

  • Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: How cellular identity goes awry. Dev Cell 19:698–711

    Article  Google Scholar 

  • Büssing I, Slack FJ, Großhans H (2008) let-7 microRNAs in development, stem cells and cancer. Trends Mol Med 14:400–409

    Article  Google Scholar 

  • Caygill EE, Johnston LA (2008) Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr Biol 18:943–950

    Article  Google Scholar 

  • Chalfie M, Horvitz HR, Sulston JE (1981) Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24:59–69

    Article  Google Scholar 

  • Chang HY, Chi J-T, Dudoit S, Bondre C, van de Rijn M, Botstein D, Brown PO (2002) Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 99:12877–12882

    Article  Google Scholar 

  • Davidson EH (2006) The regulatory genome. Academic Press, San Diego

    Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    Article  Google Scholar 

  • Du H, Taylor HS (2004) Molecular regulation of müllerian development by Hox genes. Ann N Y Acad Sci 1034:152–165

    Article  Google Scholar 

  • Duboule D, Dollé P (1989) The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 8:1497–1505

    Google Scholar 

  • Erwin DH, Davidson EH (2009) The evolution of hierarchical gene regulatory networks. Nat Rev Genet 10:141–148

    Article  Google Scholar 

  • Gardiner DM, Bryant SV (2007) Homeobox-containing genes in limb regeneration. In: Papageorgiou S (ed) HOX gene expression. Landes Bioscience, Austin, pp 102–110

    Chapter  Google Scholar 

  • Gardiner DM, Blumberg B, Komine Y, Bryant SV (1995) Regulation of HoxA expression in developing and regenerating axolotl limbs. Development 121:1731–1741

    Google Scholar 

  • Gilbert SF (2009) Ageing and cancer as diseases of epigenesist. J Biosci 34:601–604

    Article  Google Scholar 

  • Gilbert SF (2010) Developmental biology. Sinauer Associates, Sunderland

    Google Scholar 

  • Iovine MK (2007) Conserved mechanisms regulate outgrowth in zebrafish fins. Nat Chem Biol 3:613–618

    Article  Google Scholar 

  • Johnson RL, Riddle RD, Tabin CJ (1994) Mechanisms of limb patterning. Curr Opin Genet Dev 4:535–542

    Article  Google Scholar 

  • Kawazoe Y, Sekimoto T, Araki M, Takagi K, Araki K, Yamamura K (2002) Region-specific gastrointestinal Hox code during murine embryonal gut development. Dev Growth Differ 44:77–84

    Article  Google Scholar 

  • Laplane L (2011) Stem cells and the temporal boundaries of development: toward a species-dependent view. Biol Theory. doi:10.1007/s13752-011-0009-z

  • Morange M (1997) From the regulatory vision of cancer to the oncogene paradigm, 1975–1985. J Hist Biol 30:1–29

    Article  Google Scholar 

  • Morange M (2011) Development and aging. Biol Theory. doi:10.1007/s13752-011-0010-6

  • Morgan R (2006) Hox genes: a continuation of embryonic patterning? Trends Genet 22:67–69

    Article  Google Scholar 

  • Moss EG (2007) Heterochronic genes and the nature of developmental time. Curr Biol 17:R425–R434

    Article  Google Scholar 

  • Nimmo RA, Slack FJ (2009) An elegant miRror: MicroRNAs in stem cells, developmental timing and cancer. Chromosoma 118:405–418

    Article  Google Scholar 

  • Nolte C, Krumlauf R (2007) Expression of Hox genes in the nervous system of vertebrates. In: Papageorgiou S (ed) HOX gene expression. Landes Bioscience, Austin, pp 14–41

    Chapter  Google Scholar 

  • Oyama S, Griffiths PE, Gray RD (eds) (2001) Cycles of contingency: developmental systems and evolution. MIT Press, Cambridge, MA

    Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89

    Article  Google Scholar 

  • Pruett ND, Visconti RP, Jacobs DF, Scholz D, McQuinn T, Sundberg JP, Awgulewitsch A (2008) Evidence for Hox-specified positional identities in adult vasculature. BMC Dev Biol 8:93

    Article  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  Google Scholar 

  • Rinn JL, Bondre C, Gladstone HB, Brown PO, Chang HY (2006) Anatomic demarcation by positional variation in fibroblast gene expression programs. PloS Genet 2:e119

    Article  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–1323

    Article  Google Scholar 

  • Sempere LF, Dubrovsky EB, Dubrovskaya VA, Berger EM, Ambros V (2002) The expression of the let-7 small regulatory RNA is controlled by ecdysone during metamorphosis in Drosophila melanogaster. Dev Biol 244:170–179

    Article  Google Scholar 

  • Sempere LF, Sokol NS, Dubrovsky EB, Berger EM, Ambros V (2003) Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and Broad-Complex gene activity. Dev Biol 259:9–18

    Article  Google Scholar 

  • Shah N, Sukumar S (2010) The Hox genes and their roles in oncogenesis. Nat Rev Cancer 10:361–371

    Article  Google Scholar 

  • Sokol NS, Xu P, Jan Y-N, Ambros V (2008) Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes Dev 22:1591–1596

    Article  Google Scholar 

  • Soshnikova N, Duboule D (2009) Epigenetic regulation of vertebrate Hox genes: a dynamic equilibrium. Epigenetics 4:537–540

    Article  Google Scholar 

  • Stathopoulos A, Levine M (2005) Genomic regulatory networks and animal development. Dev Cell 9:449–462

    Article  Google Scholar 

  • Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230

    Article  Google Scholar 

  • Thummel CS (2001) Molecular mechanisms of developmental timing in C. elegans and Drosophila. Dev Cell 1:453–465

    Article  Google Scholar 

  • Tickle C (2007) The Hox gene network in vertebrate limb development. In: Papageorgiou S (ed) HOX gene expression. Landes Bioscience, Austin, pp 42–52

    Chapter  Google Scholar 

  • Vervoort M (2011) Regeneration and development in animals. Biol Theory. doi:10.1007/s13752-011-0005-3

  • Wang KC, Helms JA, Chang HY (2009) Regeneration, repair and remembering identity: the three Rs of Hox gene expression. Trends Cell Biol 19:268–275

    Article  Google Scholar 

  • Wellik DM (2009) Hox genes and vertebrate axial patterning. Curr Top Dev Biol 88:257–278

    Article  Google Scholar 

  • Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T (2004) Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol 5:18

    Article  Google Scholar 

  • Zhang H, Fire AZ (2010) Cell autonomous specification of temporal identity by Caenorhabditis elegans microRNA lin-4. Dev Biol 344:603–610

    Article  Google Scholar 

  • Zhang EE, Kay SA (2010) Clocks not winding down: Unraveling circadian networks. Nat Rev Mol Cell Biol 11:764–776

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to Lucie Laplane, Michel Morange, Valérie Ngo-Muller, Antonine Nicoglou, Thomas Pradeu, and Michel Vervoort for fruitful discussions and critical reading of my manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédérique Théry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Théry, F. Characterizing Animal Development with Genetic Regulatory Mechanisms. Biol Theory 6, 16–24 (2011). https://doi.org/10.1007/s13752-011-0004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13752-011-0004-4

Keywords

Navigation