Skip to main content
Log in

Random feature weights for regression trees

  • Regular Paper
  • Published:
Progress in Artificial Intelligence Aims and scope Submit manuscript

Abstract

Ensembles are learning methods the operation of which relies on a combination of different base models. The diversity of ensembles is a fundamental aspect that conditions their operation. Random Feature Weights (\({\mathcal {RFW}}\)) was proposed as a classification-tree ensemble construction method in which diversity is introduced into each tree by means of a random weight associated with each attribute. These weights vary from one tree to another in the ensemble. In this article, the idea of \({\mathcal {RFW}}\) is adapted to decision-tree regression. A comparison is drawn with other ensemble construction methods: Bagging, Random Forest, Iterated Bagging, Random Subspaces and AdaBoost.R2 obtaining competitive results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Unstable refers to those methods that produce very different models with small changes in the training set or in the parameters of the method.

  2. The recursive function is for numeric attributes, for nominal ones the algorithm creates as many children as different values has the attribute.

  3. http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html.

References

  1. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

  2. Bhatnagar, V., Bhardwaj, M., Sharma, S., Haroon, S.: Accuracy diversity based pruning of classifier ensembles. Prog. Artif. Intell. 2(2–3), 97–111 (2014). doi:10.1007/s13748-014-0042-9

    Article  Google Scholar 

  3. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). doi:10.1007/BF00058655

    MathSciNet  MATH  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). doi:10.1023/A:1010933404324

    Article  MathSciNet  MATH  Google Scholar 

  5. Breiman, L.: Using iterated bagging to debias regressions. Mach. Learn. 45(3), 261–277 (2001). doi:10.1023/A:1017934522171

    Article  MathSciNet  MATH  Google Scholar 

  6. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40(2), 139–157 (2000). doi:10.1023/A:1007607513941

    Article  Google Scholar 

  8. Diez-Pastor, J.F., Garcıa-Osorio, C., Rodríguez, J.J.: GRASP forest for regression: grasp metaheuristic applied to the construction of ensembles of regression trees. In: 14 Conferencia de la Asociación Espaola para la Inteligencia Artificial (CAEPIA’11) (2011)

  9. Diez-Pastor, J.F., García-Osorio, C., Rodríguez, J.J., Bustillo, A.: Grasp forest: a new ensemble method for trees. In: Sansone, C., Kittler, J., Roli, F. (eds.) Multiple classifier systems. Lecture Notes in Computer Science, vol. 6713, pp. 66–75. Springer, Berlin (2011). doi:10.1007/978-3-642-21557-5_9

  10. Drucker, H.: Improving regressors using boosting techniques. In: Proceedings of the 14th International Conference on Machine Learning (ICML 1997), pp. 107–115, Nashville, USA, 8–12 July 1997 (1997)

  11. Elomaa, T., Kääriäinen, M.: An analysis of reduced error pruning. arXiv:1106.0668 (2011)

  12. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Machine learning. Proceedings of the 13th International Conference (ICML ’96), pp. 148–156, Bari, 3–6 July 1996 (1996)

  13. García-Osorio, C., de Haro-García, A., García-Pedrajas, N.: Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts. Artif. Intell. 174(5–6), 410–441 (2010). doi:10.1016/j.artint.2010.01.001

    Article  MathSciNet  Google Scholar 

  14. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Comput. 4(1), 1–58 (1992)

    Article  Google Scholar 

  15. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, IH.: The WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009). doi:10.1145/1656274.1656278

  16. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998). doi:10.1109/34.709601

    Article  Google Scholar 

  17. Hochberg, Y.: A sharper bonferroni procedure for multiple tests of significance. Biometrika 75(4), 800–802 (1988). doi:10.1093/biomet/75.4.800

    Article  MathSciNet  MATH  Google Scholar 

  18. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, New York (2004)

    Book  MATH  Google Scholar 

  19. Loh, W.Y.: Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(1), 14–23 (2011). doi:10.1002/widm.8

    Article  Google Scholar 

  20. Maudes, J., Rodríguez, J.J., García-Osorio, C., García-Pedrajas, N.: Random feature weights for decision tree ensemble construction. Inf. Fusion 13(1), 20–30 (2012). doi:10.1016/j.inffus.2010.11.004

    Article  Google Scholar 

  21. Mendes-Moreira, Ja, Soares, C., Jorge, A.M., Sousa, J.F.D.: Ensemble approaches for regression: a survey. ACM Comput. Surv. 45(1), 10:1–10:40 (2012). doi:10.1145/2379776.2379786

    Article  MATH  Google Scholar 

  22. Rooney, N., Patterson, D.W., Anand, S.S., Tsymbal, A.: Random subspacing for regression ensembles. In: Proceedings of the 17th International Florida Artificial Intelligence Research Society Conference, Miami Beach, pp. 532–537 (2004)

  23. Salzberg, S.L.: C4.5: programs for machine learning by J. Ross Quinlan (Morgan Kaufmann Publishers, Inc., 1993). Mach. Learn. 16(3), 235–240 (1994). doi:10.1007/BF00993309

    MathSciNet  Google Scholar 

  24. Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J., Napolitano, A.: Resampling or reweighting: a comparison of boosting implementations. In: 20th IEEE International Conference on Tools with Artificial Intelligence, 2008, ICTAI’08, vol. 1, pp. 445–451. IEEE, New York (2008)

  25. Solomatine, D., Shrestha, D.: AdaBoost.RT: a boosting algorithm for regression problems. In: Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, vol. 2, pp. 1163–1168 (2004). doi:10.1109/IJCNN.2004.1380102

Download references

Acknowledgments

This work was funded by the Ministry of Economy and Competitiveness, project TIN 2011-24046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César García-Osorio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnaiz-González, Á., Díez-Pastor, J.F., García-Osorio, C. et al. Random feature weights for regression trees. Prog Artif Intell 5, 91–103 (2016). https://doi.org/10.1007/s13748-016-0081-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13748-016-0081-5

Keywords

Navigation