Skip to main content
Log in

Selection and Characterization of Bacillus thuringiensis (Berliner) (Eubacteriales: Bacillaceae) Strains for Ecdytolopha aurantiana (Lima) (Lepidoptera: Tortricidae) Control

  • Biological Control
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

The citrus fruit borer, Ecdytolopha aurantiana (Lima, 1927) (Lepidoptera: Tortricidae), is responsible for major losses to the citrus industry because it causes rot and drop of fruits. The current study aimed to select and characterize Bacillus thuringiensis (Berliner, 1911) strains toxic to E. aurantiana. For this purpose, 47 B. thuringiensis strains were evaluated in selective bioassays using first instar larvae of E. aurantiana. The lethal concentration (LC50) of the most toxic strains was estimated, and the strains were characterized by morphological, biochemical, and molecular methods. Of the 47 strains tested, 10 caused mortality above 85% and showed mean lethal concentrations between 1.05E+7 and 1.54E+8 spores mL−1. The lowest LC50 values were obtained for the HD-1 standard strain and the BR145, BR83, BR52, and BR09 strains. The protein profile showed the presence of Cry proteins of 60, 65, 70, 80, and 130 kDa. The molecular characterization showed the presence of cry1, cry2, cry3, and cry11 genes. The morphological analysis identified three different crystalline inclusions: bipyramidal, round, and cuboidal. The cry1 and cry2 genes were the most frequent among the B. thuringiensis strains evaluated and encode Cry proteins toxic to insects of the order Lepidoptera, which agree with the toxicity results obtained by the selective bioassays against E. aurantiana. The results showed four different B. thuringiensis strains toxic to E. aurantiana at the same level as the HD-1 standard strain, and these strains have biotechnological potential for E. aurantiana control through the production of transgenic plants or the formulation of biopesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Agostini LT, Duarte RT, Volpe HXL, Agostini TT, Carvalho GA, Abrahão YP, Polanczyk RA (2014) Compatibility among insecticides, acaricides, and Bacillus thuringiensis used to control Tetranychus urticae (Acari: Tetranychidae) and Heliothis virescens (Lepidoptera: Noctuidae) in cotton fields. Afr J Agric Res 9:941–949

    Article  CAS  Google Scholar 

  • Alves SB, Medeiros MB, Tamai MA, Lopes RB (2001) Trofobiose e microrganismos na proteção de plantas: Biofertilizantes e entomopatógenos na citricultura orgânica. Biotecnol Cienc Desenvol 4:16–21

    Google Scholar 

  • Armengol G, Escobar MC, Maldonado ME, Orduz S (2007) Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects. J Appl Microbiol 102:77–88

    Article  CAS  PubMed  Google Scholar 

  • Arrieta G, Hernández A, Espinoza AM (2004) Diversity of Bacillus thuringiensis strains isolated from coffee plantations infested with the coffee berry borer Hypothenemus hampei Ferrari. Rev Biol Trop 52:757–764

    PubMed  Google Scholar 

  • Arrieta G, Espinoza AM (2006) Characterization of a Bacillus thuringiensis strain collection isolated from diverse Costa Rican natural ecosystems. Rev Biol Trop 54:13–27

    Article  PubMed  Google Scholar 

  • Beegle CB, Yamamoto T (1992) Invitation paper (C.P. Alexander Fund): History of Bacillus thuringiensis Berliner research and development. Can Entomol 124:587–616

    Article  Google Scholar 

  • Ben-Dov SE, Zaritsky A, Dahan E, Barak Z, Sinai R, Manasherob R, Khamraey A, Troitskaya E, Dubitsky A, Berezina N, Margalith Y (1997) Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl Environ Microbiol 63:4883–4890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bertani G (1951) Studies on lysogenesis I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos FJ, Peña G, Nuñez-Valdez ME, Soberón M, Quintero R (1998) Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol 64:4965–4972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Céron J, Ortíz A, Quintero R, Güereca L, Bravo A (1995) Specific PCR primers directed to identify cry1 and cry3 genes within a Bacillus thuringiensis strains collection. Appl Environ Microbiol 61:3826–3831

    PubMed  PubMed Central  Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crickmore N, Baum J, Bravo A, Lereclus D, Narva K, Sampson K, Schnepf E, Sun M, Zeigler DR (2014) Bacilus thuringiensis toxin nomenclature. http://www.btnomenclature.info/ Accessed 02Mai 2014

  • Downes FP, Ito K (2001) Compendium of methods for the microbiological examination of foods, 4th edn. American Public Health Association, Washington DC, p 676

    Book  Google Scholar 

  • Finney DJ (1971) Probit analysis.3th ed. Cambridge University Press, Cambridge, p 333

    Google Scholar 

  • Glare TR, O’Callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. Chichester. John Wiley & Sons, Nova Jersey, p 368

  • Greene GL, Leppla NC, Dickerson WA (1976) Velvetbean caterpillar: a rearing procedure and artificial medium. J Econ Entomol 69:487–488

    Article  Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Mol Biol R 53:242–255

    Google Scholar 

  • Höfte H, Rie JV, Jansens S, Houtven AV, Vanderbruggen H, Vaeck M (1988) Monoclonal antibody analysis and insecticidal spectrum of three types of lepidopteran-specific insecticidal crystal proteins of Bacillus thuringiensis. Appl Environ Microbiol 54:2010–2017

    PubMed  PubMed Central  Google Scholar 

  • Ibarra JE, Rincón MCD, Ordúz S, Noriega D, Benintende G, Monnerat R, Regis L, Oliveira CMF, Lanz H, Rodriguez MH, Sánchez J, Peña G, Bravo A (2003) Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Appl Environ Microbiol 69:5269–5274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecadet MM, Chaufaux J, Ribier J, Lereclus D (1992) Construction of novel Bacillus thuringiensis strain with different insecticidal activities by transduction and transformation. Appl Environ Microbiol 58:840–849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lereclus D, Delécluse A, Lecadet MM (1993) Diversity of Bacillus thuringiensis toxins and genes. In: Enwistle PF, Cory JS, Beliley MJ, Higgs S (eds) Bacillus thuringiensis, An Environmental Biopesticide: Theory and practice.West Sussex, England, pp 37–69

  • Li H, Oppert B, Higgins RA, Huang F, Buschman LL, Zhu KY (2005) Susceptibility of Dipel-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae) to individual Bacillus thuringiensis protoxins. J Econ Entomol 98:1333–1340

    Article  CAS  PubMed  Google Scholar 

  • López-Pazos SA, Martínez JW, Castillo AX, Cerón-Salamanca JA (2009) Cry1B and Cry3A are active against Hypothenemus hampei Ferrari (Coleoptera: Scolytidae). J Invertebr Pathol 101:242–245

    Article  PubMed  Google Scholar 

  • Manachini B (2002) Compatibility of chemical and biological pesticides. In: Pimentel D (ed) Encyclopedia of pest management. Marcel Dekker, New York, pp 134–137

    Google Scholar 

  • Monnerat RG, Batista AC, Medeiros PT, Martins E, Melatti V, Praça L, Dumas V, Morinaga C, Demo C, Gomes ACM, Falcão R, Siqueira CB, Silva-Werneck JO, Berry C (2007) Screening of Brazilian Bacilus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Bio Control 41:291–295

    Article  Google Scholar 

  • Navon A (2000) Bacillus thuringiensis insecticides in crop protection—reality and prospects. Crop Prot 19:669–676

    Article  Google Scholar 

  • Parra JRP, Bento JMS, Garcia MS, Yamamoto PT, Vilela EF, Leal WS (2004) Development of a control alternative for the citrus fruit borer, Ecdytolopha aurantiana (Lepidoptera, Tortricidae): from basic research to the grower. Rev Bras Entomol 48:561–567

    Article  Google Scholar 

  • Parra JRP, Lopes JRS, Zucchi RA, Guedes JVC (2005) Biologia de insetos-praga e vetores. In: Matos Junior D, De Negri JD, Pio RM, Pompeu Juinio J (eds) Citros. Instituto Agronômico e Fundag, Campinas, pp 657–683

    Google Scholar 

  • Pedigo LP (1999) Entomology and pest management 3.ed. Prentice Hall, Englewood, p 691

    Google Scholar 

  • Polanczyk RA, De Bortoli SA, De Bortoli CP (2012) Bacillus thuringiensis—based biopesticides against agricultural pests in Latin America. In: Marcelo L, Larramendy L, Soloneski S (eds). Integrated Pest Management and Pest Control - Current and Future Tactics. http://www.intechopen.com/books/integrated-pest-management-and-pest-control-current-andfuture-tactics/bacillus-thuringiensis-based-biopesticides-against-agricultural-pests-in-latin-america/Accessed 25 Jan 2014

  • Porcar M, Juárez-Pérez V (2003) PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol Rev 26:419–432

    Article  CAS  PubMed  Google Scholar 

  • Praça LB, Gomes ACMM, Cabral G, Martins ES, Sujii ER, Monnerat RG (2012) Endophytic colonization by Brazilian strains of Bacillus thuringiensis on cabbage seedlings grown in vitro. Bt Res 3:11–19

    Google Scholar 

  • Ricieto APS, Fazion FAP, Carvalho Filho CD, Vilas-Boas LA, Vilas-Bôas GT (2013) Effect of vegetation on the presence and genetic diversity of Bacillus thuringiensis in soil. Can J Microbiol 59:28–33

    Article  CAS  PubMed  Google Scholar 

  • Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe and effective tool for insect pest control. J Microbiol Biotechnol 17:547–559

    CAS  PubMed  Google Scholar 

  • Saadoun I, Al-Momani F, Obeidat M, Meqdam M, Elbetieha A (2001) Assessment of toxic potential of local Jordanian Bacillus thuringiensis strains on Drosophila melanogaster and Culex sp. (Diptera). J Appl Microbiol 90:866–872

    Article  CAS  PubMed  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300

    Article  CAS  PubMed  Google Scholar 

  • Santos K, Neves PMOJ, Meneguim AM, Santos RB, Santos WJ, Vilas-Bôas GT, Dumas V, Martins E, Praça LB, Queiroz P, Berry C, Monnerat R (2009) Selection and characterization of the Bacillus thuringiensis strains toxic to Spodoptera eridania (Cramer), Spodoptera cosmioides (Walker) and Spodoptera frugiperda (Smith) (Lepidoptera:Noctuidae). Biol control 50:157–163

    Article  Google Scholar 

  • Silva SB, Silva-Werneck J, Falcão R, Oliveira Neto O, Sá MF, Bravo A, Monnerat RG (2004) Characterization of novel Brazilian Bacillus thuringiensis strains active against Spodoptera frugiperda and other insect pests. J Appl Entomol 128:1–6

    Article  Google Scholar 

  • Tailor R, Tippett J, Gibb G, Pells S, Jordan L, Ely S (1992) Identification and characterization of a novel Bacillus thuringiensis δ-endotoxin entomocidal to coleopteran and lepidopteran larvae. Mol Microbiol 6:1211–1217

    Article  CAS  PubMed  Google Scholar 

  • Vidal-Quist JC, Castañera P, González-Cabrera J (2009) Diversity of Bacillus thuringiensis strains isolated from citrus orchards in Spain and evaluation of their insecticidal activity against Ceratitis capitata. J Microbiol Biotechnol 19:749–759

    CAS  PubMed  Google Scholar 

  • Vilas-Bôas GT, Peruca APS, Arantes OMN (2007) Biology and taxonomy of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis. Can J Microbiol 53:673–687

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Council for Scientific and Technological Development (CNPq) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Zorzetti.

Additional information

Edited by Ítalo Delalibera Jr – ESALQ/USP

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorzetti, J., Ricietto, A.P.S., Fazion, F.A.P. et al. Selection and Characterization of Bacillus thuringiensis (Berliner) (Eubacteriales: Bacillaceae) Strains for Ecdytolopha aurantiana (Lima) (Lepidoptera: Tortricidae) Control. Neotrop Entomol 46, 86–92 (2017). https://doi.org/10.1007/s13744-016-0424-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-016-0424-8

Keywords

Navigation