Skip to main content

Advertisement

Log in

Effect of Biotic and Abiotic Factors on Diversity Patterns of Anthophyllous Insect Communities in a Tropical Mountain Forest

  • Ecology, Behavior and Bionomics
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

The determinants of diversity are a central issue in ecology, particularly in Andean forests that are known to be a major diversity hotspot for several taxa. We examined the effect of abiotic (elevation and precipitation) and biotic (flowering plant diversity) factors considered to be decisive causal factors of diversity patterns on anthophyllous insect communities on mountain forest. Sampling was carried out in 100-m transects at eight elevational levels and during a period of 8 months. All flowering plants in the understory and their flowering visitors were recorded. Species richness and diversity were estimated for each elevation and month. Diversity of flowering plants, elevation, and precipitation were used as independent variables in multiple regressions against insect diversity. The evaluated abiotic and biotic factors had contrasting effects on insect diversity: a significant decrease on insect diversity occurred at high elevation and dry months (i.e., threshold effect), while it showed a positive relationship with flowering plant diversity through time (i.e., linear effect), but not along elevation. Rapid turnover of species of both interacting guilds was observed every 100-m altitude and month. Local insect communities were also divided functionally depending on the plant family they visit. These results indicate that each insect community is distinctive among elevations and months and that diversity of flowering plants, precipitation, and elevation influence their structure and composition. Thus, conservation strategies should involve protection of forest cover at the whole elevation gradient, in order to preserve common and exclusive components of diversity and consequently, the mosaic of plant–pollinator interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5

Similar content being viewed by others

References

  • Alves-Silva E, Barönio GJ, Torezan-Silingardi HM, Del-Claro K (2013) Foraging behavior of Brachygastra lecheguana (Hymenoptera: Vespidae) on Banisteriopsis malifolia (Malpighiaceae): extrafloral nectar consumption and herbivore predation in a tending ant system. Entomol Sci 16:162–169

    Article  Google Scholar 

  • Arnott SE, Vanni MJ (1993) Zooplankton assemblages in fishless bog lakes: influence of biotic and abiotic factors. Ecology 74:2361–2380

    Article  Google Scholar 

  • Arroyo MTK, Primack R, Armesto JJ (1982) Community studies in pollination ecology in the high temperate Andes of Central Chile. I. Pollination mechanisms and altitudinal variation. Am J Bot 69:82–97

    Article  Google Scholar 

  • Bachman S, Baker WJ, Brummit N, Dransfield J, Moat J (2004) Elevational gradients, area and tropical island diversity: an example from the palms of New Guinea. Ecography 27:299–310

    Article  Google Scholar 

  • Basilio AM, Medan D, Torretta JP, Bartoloni NJ (2006) A year-long plant–pollinator network. Austral Ecol 31:975–983

    Article  Google Scholar 

  • Basset Y (2001) Invertebrates in the canopy of tropical rain forests—how much do we know? Plant Ecol 153:87–107

    Article  Google Scholar 

  • Brehm G, Süßenbach D, Fiedler K (2003) Unique elevational patterns of geometrid moths in an Andean montane rainforest. Ecography 26:456–466

    Article  Google Scholar 

  • Brehm G, Pitkin LM, Hilt N, Fiedler K (2005) Montane Andean rain forests are a global diversity hotspot of geometrid moths. J Biogeogr 32:1621–1627

    Article  Google Scholar 

  • Callejas R, Idarraga A (2011) Flora de Antioquia. Catálogo de las plantas vasculares, vol I, Introducción. D’Vinni, Bogotá

    Google Scholar 

  • Cardona-Duque J, Gómez-Murillo L, Franz NM (2011) Phylogenetic reassessment of Cyclanthura, a Neotropical genus of Acalyptini associated with arum and cyclanth inflorescences (Coleoptera: Curculionidae: Curculioninae). Annual Meeting of the Entomological Society of America, Reno NV, XI-14-2011

  • Carranza-Quiceno JA, Estévez-Varón JV (2008) Ecología de la polinización de Bromeliaceae en el dosel de los bosques neotropicales de montaña. Boletín Científico Centro de Museos. Museo de Historia Natural 12:38–47

  • Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Austral J Ecol 18:117–143

    Article  Google Scholar 

  • Colwell RK (2009) EstimateS: statistical estimation of species richness and shared species from samples, version 8.2 (http://purl.oclc.org/estimates)

  • Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Phil Trans R Soc B 345:101–118

    Article  CAS  PubMed  Google Scholar 

  • Condon MA, Scheffer SA, Lewis ML, Swensen SM (2008) Hidden Neotropical diversity: greater than the sum of its parts. Science 320:928–931

    Article  CAS  PubMed  Google Scholar 

  • Cuesta F, Peralvo M, Valarezo N (2009) Los bosques montanos de los Andes Tropicales: una evaluación regional de su estado de conservación y de su vulnerabilidad a efectos del cambio climático. Imprenta Mariscal, Quito

    Google Scholar 

  • Devoto M, Medan D, Montaldo NH (2005) Patterns of interaction between plants and pollinators along an environmental gradient. Oikos 109:461–472

    Article  Google Scholar 

  • Díaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Dyer LA, Singer MS, Lill JT, Stireman JO, Gentry GL, Marquis RJ, Ricklefs RE, Greeney HF, Wagner DL, Morais HC, Diniz IR, Kursar TA, Coley PD (2007) Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:696

    Article  CAS  PubMed  Google Scholar 

  • Escobar F, Lobo JM, Halffter G (2005) Altitudinal variation of dung beetle (Scarabaeidae: Scarabaeinae) assemblages in the Colombian Andes. Glob Ecol Biogeogr 14:327–337

    Article  Google Scholar 

  • Faegri K, Van Der Pijl L (1979) The principles of pollination ecology, 3rd edn. Pergamon, London

    Google Scholar 

  • Fisher BL (1998) Ant diversity along an elevational gradient in the Réserve Spéciale d’Anjanaharibe-Sud and on the western Masoala Peninsula, Madagascar. Fieldiana Zool 90:39–67

    Google Scholar 

  • Guisande-Gonzáles C, Vaamonde A, Barreiro A (2011) Tratamiento de datos con R, Statistica y SPSS. FER Fotocomposición, España

  • Hammer Ø (2011) PAleontological STatistics PAST. Version 2.12. Natural History Museum. University of Oslo, Norway

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hodkinson ID (2005) Terrestrial insects along elevation gradients: species and community responses to altitude. Biol Rev 80:489–513

    Article  PubMed  Google Scholar 

  • Hoffman F (2005) Biodiversity and pollination. Flowering plants and flower-visiting insects in agricultural and semi-natural landscapes. PhD. Thesis, University of Groningen. Groningen, Netherlands, p 224

  • Kearns CA, Inouye DW (1997) Pollinators, flowering plants, and conservation biology. Bioscience 47:297–307

    Article  Google Scholar 

  • Kelly CK, Southwood TRE (1999) Species richness and resource availability: a phylogenetic analysis of insects associated with trees. Proc Natl Acad Sci U S A 96:8013–8016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kessler M (2000) Altitudinal zonation of Andean cryptogam communities. J Biogeogr 21:275–282

    Article  Google Scholar 

  • Kessler M, Kromer T (2000) Patterns and ecological correlates of pollination modes among bromeliad communities of Andean forest in Bolivia. Plant Biol 2:659–669

    Article  Google Scholar 

  • Korner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Krömer T, Kessler M, Herzog SK (2006) Distribution and flowering ecology of bromeliads along two climatically contrasting elevational transects in the Bolivian Andes. Biotropica 38:183–195

    Article  Google Scholar 

  • Lawton JH, MacGarvin M, Heads PA (1987) Effects of altitude on the abundance and species richness of insect herbivores on bracken. J Anim Ecol 56:147–160

    Article  Google Scholar 

  • Ledesma-Castañeda EA (2011) Plan de manejo Reserva Natural La Mesenia-Paramillo. BSc Thesis. Servicio Nacional de Aprendizaje SENA, Caldas, Antioquia, Colombia

  • Lobo JM, Halffter G (2000) Biogeographical and ecological factors affecting the altitudinal variation of mountainous communities of coprophagous beetles (Coleoptera, Scarabaeoidea): a comparative study. Ann Entomol Soc Am 93:115–126

    Article  Google Scholar 

  • Lomolino MV (2001) Elevation gradients of species–density: historical and prospective views. Glob Ecol Biogeogr 10:3–13

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Book  Google Scholar 

  • Malo JE, Baonza J (2002) Are there predictable clines in plant–pollinator interactions along altitudinal gradients? The example of Cytisus scoparius (L.) link in the Sierra de Guadarrama (Central Spain). Divers Distrib 8:365–371

    Article  Google Scholar 

  • Manly BFJ (1991) Randomization and Monte Carlo methods in biology. Chapman and Hall, London

    Book  Google Scholar 

  • Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Petanidou T, Kallimanis AS, Tzanopoulos JS, Gardeli SP, Pantis JD (2008) Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol Lett 11:564–575

    Article  PubMed  Google Scholar 

  • Pinheiro F, Diniz IR, Coelho D, Bandeira MPS (2002) Seasonal pattern of insect abundance in the Brazilian Cerrado. Austral Ecol 27:132–136

    Article  Google Scholar 

  • Power ME, Stout RJ, Cushing CE, Harper PP, Hauer FR, Matthew WJ, Moyle PB, Statzner B, Wais de Badgen IR (1988) Biotic and abiotic controls in river and stream communities. J N Am Benthol 7:456–479

    Article  Google Scholar 

  • Pyrcz TW, Wojtusiak J (2002) The vertical distribution of pronophiline butterflies (Nymphalidae, Satyrinae) along an elevational transect in Monte Zerpa (Cordillera de Mérida, Venezuela) with remarks on their diversity and parapatric distribution. Glob Ecol Biogeogr 11:211–221

    Article  Google Scholar 

  • Rahbeck C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18:200–205

    Article  Google Scholar 

  • Rico-Gray V, Díaz-Castelazo C, Ramírez-Hernández A, Guimarães PR Jr, Holland JN (2012) Abiotic factors shape temporal variation in the structure of an ant–plant network. Arthropod Plant Interact 6:289–295

    Article  Google Scholar 

  • Suárez YR, Junior MP, Catella AC (2004) Factors regulating diversity and abundance of fish communities in Pantanal lagoons, Brazil. Fish Manag Ecol 11:45–50

    Article  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Vásquez JA, Givnish TJ (1998) Altitudinal gradients in tropical forest composition, structure and diversity in the Sierra de Manatlán. J Ecol 86:999–1020

    Article  Google Scholar 

  • Vilela AA, Torezan-Silingardi HM, Del-Claro K (2014) Conditional outcomes in ant-plant-herbivore interactions influenced by sequential flowering. Flora. doi:10.1016/j.flora.2014.04.004

    Google Scholar 

  • Wolda H (1987) Altitude, habitat and tropical insect diversity. Biol J Linn Soc 30:313–323

    Article  Google Scholar 

  • Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to The Hummingbird Conservancy and Gustavo Suárez for the logistic support. We are greatly indebted to Martha Wolff (Colección Entomológica de Antioquia) for the assistance with identification of insects, Felipe Cardona and Alvaro Idarraga for the assistance with identification of plants (Herbario Universidad de Antioquia), and Liliana Ramírez and local assistants from Family Rendón-Agudelo for the field job. This work was supported by grant Comité para el Desarrollo de la Investigación CODI-Universidad de Antioquia CPT-0915.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S E Cuartas-Hernández.

Additional information

Edited by Kleber Del Claro – UFU

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Online Supplementary Material S1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuartas-Hernández, S.E., Gómez-Murillo, L. Effect of Biotic and Abiotic Factors on Diversity Patterns of Anthophyllous Insect Communities in a Tropical Mountain Forest. Neotrop Entomol 44, 214–223 (2015). https://doi.org/10.1007/s13744-014-0265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-014-0265-2

Keywords

Navigation