Skip to main content
Log in

Fischer–Tropsch synthesis over CNT-supported cobalt catalyst: effect of magnetic field

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In the present work, the cobalt catalysts supported on carbon nanotubes (CNTs) were prepared by impregnation method in the presence and absence of magnetic field. The prepared catalysts were employed to yield higher hydrocarbons via Fischer–Tropsch synthesis. It is explored that using magnetized water can effectively change the catalyst geometry in impregnation catalyst preparation method. For the preparation of different sizes of cobalt particles on the CNTs support, the physical properties of solvent (water) in impregnation process were changed using the magnetizing process. The results showed that the average particle sizes of impregnated cobalt nanoparticles were decreased by using magnetized water in impregnation step. In addition, in the magnetized treated cobalt catalyst, the cobalt particles mostly dispersed outside the tubes because the capillary forces decreased by reducing water surface tension. Furthermore, the experimental results showed that the probability of chain growth (α) and selectivity to heavier hydrocarbons increased in magnetized water treatment catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G.P. Van Der Laan, A.A.C.M. Beenackers, Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catal. Rev. 41, 255–318 (1999)

    Article  Google Scholar 

  2. A. Nakhaei Pour, M.R. Housaindokht, J. Zarkesh, M. Irani, E.G. Babakhani, Kinetics study of CO hydrogenation on a precipitated iron catalyst. J. Ind. Eng. Chem. 18, 597–603 (2012)

    Article  Google Scholar 

  3. A.Nakhaei Pour, H. Khodabandeh, M. Izadyar, M.R. Housaindokht, Mechanistic double ASF product distribution study of Fischer–Tropsch synthesis on precipitated iron catalyst. J. Nat. Gas Sci. Eng. 15, 53–58 (2013)

    Article  CAS  Google Scholar 

  4. M.E. Dry, Fischer Tropsch Technology in Studies in Surface Science and Catalysis, ed. by S. André, D. Mark (Elsevier, Amsterdam, 2004), pp. 533–600

  5. W. Ma, G. Jacobs, D.E. Sparks, M.K. Gnanamani, V.R.R. Pendyala, C.H. Yen et al., Fischer–Tropsch synthesis: support and cobalt cluster size effects on kinetics over Co/Al2O3 and Co/SiO2 catalysts. Fuel 90, 756–765 (2011)

    Article  CAS  Google Scholar 

  6. A.Nakhaei Pour, M. Housaindokht, Fischer–Tropsch synthesis over CNT supported cobalt catalysts: role of metal nanoparticle size on catalyst activity and products selectivity. Catal. Lett. 143, 1328–1338 (2013)

    Article  CAS  Google Scholar 

  7. A.Y. Khodakov, W. Chu, P. Fongarland, Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 107, 1692–1744 (2007)

    Article  CAS  Google Scholar 

  8. E. Iglesia, Design, synthesis, and use of cobalt-based Fischer–Tropsch synthesis catalysts. Appl. Catal. A 161, 59–78 (1997)

    Article  CAS  Google Scholar 

  9. A. Tavasoli, A.Nakhaei Pour, M.G. Ahangari, Kinetics and product distribution studies on ruthenium-promoted cobalt/alumina Fischer–Tropsch synthesis catalyst. J. Nat. Gas Chem. 19, 653–659 (2010)

    Article  CAS  Google Scholar 

  10. D. Schanke, A. Hilmen, E. Bergene, K. Kinnari, E. Rytter, E. Ådnanes et al., Study of the deactivation mechanism of Al2O3-supported cobalt Fischer–Tropsch catalysts. Catal. Lett. 34, 269–284 (1995)

    Article  CAS  Google Scholar 

  11. W. Chu, P.A. Chernavskii, L. Gengembre, G.A. Pankina, P. Fongarland, A.Y. Khodakov, Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts. J. Catal. 252, 215–230 (2007)

    Article  CAS  Google Scholar 

  12. A. Karimi, A.Nakhaei Pour, F. Torabi, B. Hatami, A. Tavasoli, M.R. Alaei et al., Fischer–Tropsch synthesis over ruthenium-promoted Co/Al2O3 catalyst with different reduction procedures. J. Nat. Gas Chem. 19, 503–508 (2010)

    Article  CAS  Google Scholar 

  13. H. Dai, Carbon nanotubes: opportunities and challenges. Surf. Sci. 500, 218–241 (2002)

    Article  CAS  Google Scholar 

  14. A. Tavasoli, K. Sadagiani, F. Khorashe, A.A. Seifkordi, A.A. Rohani, A.Nakhaei Pour, Cobalt supported on carbon nanotubes—a promising novel Fischer–Tropsch synthesis catalyst. Fuel Process. Technol. 89, 491–498 (2008)

    Article  CAS  Google Scholar 

  15. A.Nakhaei Pour, E. Hosaini, A. Tavasoli, A. Behroozsarand, F. Dolati, Intrinsic kinetics of Fischer–Tropsch synthesis over Co/CNTs catalyst: effects of metallic cobalt particle size. J. Nat. Gas Sci. Eng. 21, 772–778 (2014)

    Article  CAS  Google Scholar 

  16. A.Nakhaei Pour, S.A. Taheri, S. Anahid, B. Hatami, A. Tavasoli, Deactivation studies of Co/CNTs catalyst in Fischer–Tropsch synthesis. J. Nat. Gas Sci. Eng. 18, 104–111 (2014)

    Article  CAS  Google Scholar 

  17. A.Nakhaei Pour, E. Hosaini, M. Izadyar, M.R. Housaindokht, Particle size effects in Fischer–Tropsch synthesis by Co catalyst supported on carbon nanotubes. Chin. J. Catal. 36, 1372–1378 (2015)

    Article  Google Scholar 

  18. M.N. Tchoul, W.T. Ford, G. Lolli, D.E. Resasco, S. Arepalli, Effect of mild nitric acid oxidation on dispersibility, size, and structure of single-walled carbon nanotubes. Chem. Mater. 19, 5765–5772 (2007)

    Article  CAS  Google Scholar 

  19. A. Karimi, B. Nasernejad, A.M. Rashidi, A. Tavasoli, M. Pourkhalil, Functional group effect on carbon nanotube (CNT)-supported cobalt catalysts in Fischer–Tropsch synthesis activity, selectivity and stability. Fuel 117, 1045–1051 (2014)

    Article  CAS  Google Scholar 

  20. A.J. Van Dillen, R.J. Terörde, D.J. Lensveld, J.W. Geus, K.P. De Jong, Synthesis of supported catalysts by impregnation and drying using aqueous chelated metal complexes. J. Catal. 216, 257–264 (2003)

    Article  Google Scholar 

  21. F. Pinna, Supported metal catalysts preparation. Catal. Today 41, 129–137 (1998)

    Article  CAS  Google Scholar 

  22. R. Cai, H. Yang, J. He, W. Zhu, The effects of magnetic fields on water molecular hydrogen bonds. J. Mol. Struct. 938, 15–19 (2009)

    Article  CAS  Google Scholar 

  23. K.-T. Chang, C.-I. Weng, The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. J. Appl. Phys. 100, 043917 (2006)

    Article  Google Scholar 

  24. H. Hosoda, H. Mori, N. Sogoshi, A. Nagasawa, S. Nakabayashi, Refractive indices of water and aqueous electrolyte solutions under high magnetic fields. J. Phys. Chem. A 108, 1461–1464 (2004)

    Article  CAS  Google Scholar 

  25. B. Bazubandi, E. Moaseri, M. Baniadam, M. Maghrebi, M. Gholizadeh, Fabrication of multi-walled carbon nanotube thin films via electrophoretic deposition process: effect of water magnetization on deposition efficiency. Appl. Phys. A 120, 495–502 (2015)

    Article  CAS  Google Scholar 

  26. M.H.R. Mohassel, A. Aliverdi, R. Ghorbani, Effects of a magnetic field and adjuvant in the efficacy of cycloxydim and clodinafop-propargyl on the control of wild oat (Avena fatua). Weed Biol. Manag. 9, 300–306 (2009)

    Article  CAS  Google Scholar 

  27. J. Vanhanen, A.-P. Hyvärinen, T. Anttila, T. Raatikainen, Y. Viisanen, H. Lihavainen, Ternary solution of sodium chloride, succinic acid and water; surface tension and its influence on cloud droplet activation. Atmos. Chem. Phys. 8, 4595–4604 (2008)

    Article  CAS  Google Scholar 

  28. A.Nakhaei Pour, E. Hosaini, M. Feyzi, Prediction of cobalt particle size during catalyst deactivation in Fischer–Tropsch synthesis. J. Iran. Chem. Soc. 13, 139–147 (2016)

    Article  CAS  Google Scholar 

  29. Ø. Borg, S. Eri, E.A. Blekkan, S. Storsæter, H. Wigum, E. Rytter et al., Fischer–Tropsch synthesis over γ-alumina-supported cobalt catalysts: effect of support variables. J. Catal. 248, 89–100 (2007)

    Article  CAS  Google Scholar 

  30. Y.I. Cho, S.-H. Lee, Reduction in the surface tension of water due to physical water treatment for fouling control in heat exchangers. Int. Commun. Heat Mass Transf. 32, 1–9 (2005)

    Article  CAS  Google Scholar 

  31. M. Trépanier, A.K. Dalai, N. Abatzoglou, Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: role of nanoparticle size on reducibility, activity and selectivity in Fischer–Tropsch reactions. Appl. Catal. A 374, 79–86 (2010)

    Article  Google Scholar 

  32. M. Chougule, S. Pawar, P. Godse, R. Sakhare, S. Sen, V. Patil, Sol–gel derived Co3O4 thin films: effect of annealing on structural, morphological and optoelectronic properties. J. Mater. Sci. Mater. Electron. 23, 772–778 (2012)

    Article  CAS  Google Scholar 

  33. M. Davari, S. Karimi, A. Tavasoli, A. Karimi, Enhancement of activity, selectivity and stability of CNTs-supported cobalt catalyst in Fischer–Tropsch via CNTs functionalization. Appl. Catal. A 485, 133–142 (2014)

    Article  CAS  Google Scholar 

  34. D.Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes, Chemical reviews, 106, 1105–1136 (2006)  

    Google Scholar 

  35. J.-P. Tessonnier, O. Ersen, G. Weinberg, C. Pham-Huu, D.S. Su, R. Schlogl, Selective deposition of metal nanoparticles inside or outside multiwalled carbon nanotubes. ACS Nano 3, 2081–2089 (2009)

    Article  CAS  Google Scholar 

  36. P. Serp, E. Castillejos, Catalysis in carbon nanotubes. ChemCatChem 2, 41–47 (2010)

    Article  CAS  Google Scholar 

  37. R. Maatman, C. Prater, Adsorption and exclusion in impregnation of porous catalytic supports. Ind. Eng. Chem. 49, 253–257 (1957)

    Article  CAS  Google Scholar 

  38. A.Nakhaei Pour, M. Housaindokht, H. Monhemi, Effect of solvent surface tension on the radius of hematite nanoparticles. Colloid J. 76, 782–787 (2014)

    Article  Google Scholar 

  39. B. Billia, R. Trivedi, D. Hurle, Handbook of Crystal Growth, vol. 1B (North-Holland, Amsterdam, 1993)

    Google Scholar 

  40. G.L. Bezemer, A. van Laak, A.J. van Dillen, K.P. de Jong, Cobalt supported on carbon nanofibers—a promising novel Fischer–Tropsch catalyst, in Studies in Surface Science and Catalysis, ed. by B. Xinhe, X. Yide (Elsevier, Amsterdam, 2004), pp. 259–264

    Google Scholar 

  41. W. Chen, X. Pan, X. Bao, Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes. J. Am. Chem. Soc. 129, 7421–7426 (2007)

    Article  CAS  Google Scholar 

  42. W. Chen, Z. Fan, X. Pan, X. Bao, Effect of confinement in carbon nanotubes on the activity of Fischer–Tropsch iron catalyst. J. Am. Chem. Soc. 130, 9414–9419 (2008)

    Article  CAS  Google Scholar 

  43. I. Alstrup, I. Chorkendorff, R. Candia, B.S. Clausen, H. Topsøe, A combined X-ray photoelectron and Mössbauer emission spectroscopy study of the state of cobalt in sulfided, supported, and unsupported Co–Mo catalysts. J. Catal. 77, 397–409 (1982)

    Article  CAS  Google Scholar 

  44. A.Y. Khodakov, A. Griboval-Constant, R. Bechara, V.L. Zholobenko, Pore size effects in Fischer–Tropsch synthesis over cobalt-supported mesoporous silicas. J. Catal. 206, 230–241 (2002)

    Article  CAS  Google Scholar 

  45. Y. Yang, L. Jia, B. Hou, D. Li, J. Wang, Y. Sun, The correlation of interfacial interaction and catalytic performance of N-doped mesoporous carbon supported cobalt nanoparticles for Fischer–Tropsch synthesis. J. Phys. Chem. C 118, 268–277 (2013)

    Article  Google Scholar 

  46. J. Xiong, Ø. Borg, E.A. Blekkan, A. Holmen, Hydrogen chemisorption on rhenium-promoted γ-alumina supported cobalt catalysts. Catal. Commun. 9, 2327–2330 (2008)

    Article  CAS  Google Scholar 

  47. G.L. Bezemer, J.H. Bitter, H.P.C.E. Kuipers, H. Oosterbeek, J.E. Holewijn, X. Xu et al., Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 128, 3956–3964 (2006)

    Article  CAS  Google Scholar 

  48. H. Hayashi, L.Z. Chen, T. Tago, M. Kishida, K. Wakabayashi, Catalytic properties of Fe/SiO2 catalysts prepared using microemulsion for CO hydrogenation. Appl. Catal. A 231, 81–89 (2002)

    Article  CAS  Google Scholar 

  49. Ø. Borg, P.D.C. Dietzel, A.I. Spjelkavik, E.Z. Tveten, J.C. Walmsley, S. Diplas et al., Fischer–Tropsch synthesis: cobalt particle size and support effects on intrinsic activity and product distribution. J. Catal. 259, 161–164 (2008)

    Article  CAS  Google Scholar 

  50. M. Trépanier, A. Tavasoli, A.K. Dalai, N. Abatzoglou, Fischer–Tropsch synthesis over carbon nanotubes supported cobalt catalysts in a fixed bed reactor: influence of acid treatment. Fuel Process. Technol. 90, 367–374 (2009)

    Article  Google Scholar 

  51. Ø. Borg, N. Hammer, S. Eri, O.A. Lindvåg, R. Myrstad, E.A. Blekkan et al., Fischer–Tropsch synthesis over un-promoted and Re-promoted γ-Al2O3 supported cobalt catalysts with different pore sizes. Catal. Today 142, 70–77 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nakhaei Pour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhaei Pour, A., Karimi, J., Taghipoor, S. et al. Fischer–Tropsch synthesis over CNT-supported cobalt catalyst: effect of magnetic field. J IRAN CHEM SOC 14, 1477–1488 (2017). https://doi.org/10.1007/s13738-017-1088-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1088-y

Keywords

Navigation