Skip to main content

Advertisement

Log in

Determination of copper ion by square wave anodic stripping voltammetry at antimony trioxide-modified carbon nanotube paste electrode

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this work, an antimony trioxide-modified multi-walled carbon nanotube paste electrode (Sb2O3/CNTPE) was employed for determination of Cu2+ ions by using square wave anodic stripping voltammetry (SWASV) in the presence of 8-hydroxy-7-iodo-5-quinoline sulfonic acid (HIQSA) as a chelating agent. The field emission scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS) and electrochemical impedance spectroscopy (EIS) methods were applied to estimate the morphology and properties of the modified electrode. Measurements related to SWASV were taken in 0.6 M HCl at −1.0 V versus Ag|AgCl|KCl (3 M) for 90 s (deposition step). After equilibrium time of 15 s, an ASV appeared at 0.0 V versus Ag|AgCl|KCl (3 M) (stripping step). The sensor depicted a fairly linear response for Cu2+ in the concentration range of 2–100 ppb with appropriate detection limit about 0.39 ppb and limit of quantification about 1.3 ppb. The stability of the modified electrode during 7 weeks and its behavior in the presence of some metal ions was evaluated. The practical applicability of the Sb2O3/CNTPE was established on the voltammetric determination of Cu2+ in tap water as a sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Araya, M. Olivares, F. Pizarro, M. Gonzlez, H. Speisky, R. Uauy, Am. J. Clin. Nutr. 77, 646 (2003)

    CAS  Google Scholar 

  2. J.A. Nunes, B.L. Batilsa, J.L. Rodrigues, N.M. Caldas, J.A. Neto, J.F. Barbosa, J. Toxicol. Environ. Health 73, 878 (2010)

    Article  CAS  Google Scholar 

  3. T. Yujiao, J. Shuangqiao, W. Pingyan, Spectrosc. Lett. 49, 249 (2016)

    Article  Google Scholar 

  4. W.S. Zhong , T. Ren, L.J. Zhao, J. Food Drug Anal. 24, 46 (2016)  

  5. E. Horakova, J. Barek, V. Viscosil, Anal. Lett. 49, 56 (2016)

    Article  CAS  Google Scholar 

  6. I.H.I. Habib, M. Rizk, D. Mohamed, S. Mowaka, R.T. El-Eryan, Int. J. Electrochem. Sci. 11, 4802 (2016)

    Article  CAS  Google Scholar 

  7. R.R. Younusov, G.A. Evtugyn, F. Arduini, D. Moscone, G. Palleschi, Talanta 85, 216 (2011)

    Article  Google Scholar 

  8. H. Hamidi, E. Shams, B. Yadollahi, F.K. Esfahani, Talanta 74, 909 (2008)

    Article  CAS  Google Scholar 

  9. E.M. Materon, A. Wong, S.I. Klein, J. Liu, M. Sotomayor, Electrochim. Acta 158, 271 (2015)

    Article  CAS  Google Scholar 

  10. J.Y. Choi, K. Seo, S.R. Cho, J.R. Oh, S.H. Kahng, J. Park, Anal. Chim. Acta 443, 241 (2001)

    Article  CAS  Google Scholar 

  11. R. Pauliukaite, R. Metelka, I. Švancara, A. Królicka, A. Bobrowski, K. Vytřas, E. Norkus, K. Kalcher, Anal. Bioanal. Chem. 374, 1155 (2002)

    Article  CAS  Google Scholar 

  12. E. Svobodoá, L. Baldrianová, S.B. Hočevar, I. Švancara, Int. J. Electrochem. Sci. 7, 197 (2012)

    Google Scholar 

  13. A. Królicka, R. Pauliukaitė, I. Švancara, R. Metelka, A. Bobrowski, E. Norkus, K. Kalcher, K. Vytřas, Electrochem. Commun. 4, 193 (2002)

    Article  Google Scholar 

  14. N. Serrano, A. Alberich, J.M. Diaz-Cruz, C. Arino, M. Esteban, Trends Anal. Chem. 46, 15 (2013)

    Article  CAS  Google Scholar 

  15. J. Wang, J.M. Lu, S.B. Hocevar, B. Ogorevc, Electroanalysis 13, 13 (2001)

    Article  Google Scholar 

  16. S.B. Hocevar, I. Švancara, B. Ogorevc, K. Vytřas, Anal. Chem. 79, 8639 (2007)

    Article  CAS  Google Scholar 

  17. M.K. Dey, A.K. Satpati, A.V.R. Reddy, Anal. Methods 6, 5207 (2014)

    Article  CAS  Google Scholar 

  18. A.M. Ashrafi, K. Vytřas, Int. J. Electrochem. Sci. 8, 2095 (2013)

    CAS  Google Scholar 

  19. C. Kokinos, A. Economou, I. Raptis, T. Speliotis, Electrochem. Commun. 11, 250 (2009)

    Article  Google Scholar 

  20. V. Jovanovski, S.B. Hocevar, B. Ogorevc, Electroanalysis 21, 2321 (2009)

    Article  CAS  Google Scholar 

  21. X.C. Jiang, Q. Sun, J.L. Zhang, B.Z. Wang, X.Y. Du, Sens. Lett. 7, 91 (2009)

    Article  CAS  Google Scholar 

  22. V. Urbanová, K. Vytras, A. Kuhn, Electrochem. Commun. 12, 114 (2010)

    Article  Google Scholar 

  23. K.E. Toghill, L. Xiao, G.C. Wildgoose, R.G. Compton, Electroanalysis 21, 1113 (2009)

    Article  CAS  Google Scholar 

  24. X. Guo, Y.H. Yun, V.N. Shanov, H.B. Halsall, W.R. Heineman, Electroanalysis 23, 1252 (2011)

    Article  CAS  Google Scholar 

  25. R. Ouyang, Z. Zhu, C.E. Tatum, J.Q. Chambers, Z.L. Xue, J. Electroanal. Chem. 656, 78 (2011)

    Article  CAS  Google Scholar 

  26. J. Morton, N. Havens, A. Mugweru, A.K. Wanekaya, Electroanalysis 21, 1597 (2009)

    Article  CAS  Google Scholar 

  27. A. Peigney, C. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Carbon 39, 507 (2001)

    Article  CAS  Google Scholar 

  28. J.J. Gooding, R. Wibowo, J.Q. Liu, W.R. Yang, D. Losic, S. Orbons, F.J. Mearns, J.G. Shapter, D.B. Hibbert, J. Am. Chem. Soc. 125, 9006 (2003)

    Article  CAS  Google Scholar 

  29. M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381, 678 (1996)

    Article  CAS  Google Scholar 

  30. K. Gong, S. Chakrabarti, L. Dai, Angew. Chem. Int. Ed. 47, 5446 (2008)

    Article  CAS  Google Scholar 

  31. M. Taei, F. Abedi, Chin. J. Catal. 37, 436 (2016)

    Article  CAS  Google Scholar 

  32. V. Prachayasittikul, S. Prachayasittikul, S. Ruchirawat, V. Prachayasittikul, Drug. Des. Dev. Ther. 7, 1157 (2013)

    Article  Google Scholar 

  33. J.B. Raoof, F. Chekin, R. Ojani, S. Barari, M. Anbia, S. Mandegarzad, J. Solid State Electrochem. 16, 3753 (2012)

    Article  CAS  Google Scholar 

  34. D.S. Rajavat, N. Kumar, S.P. Satsangee, J. Anal. Sci. Technol. 5, 19 (2014)

    Article  Google Scholar 

  35. J.H. Entwisle, A. Scrutton, U.S. Patent 3,627,669 (1971)

  36. P.J. Britto, K.S.V. Santhanam, A. Rubio, J.A. Alonso, P.M. Ajayan, Adv. Mater. 11, 154 (1999)

    Article  CAS  Google Scholar 

  37. J. Wang, E.H. Hansen, Anal. Chim. Acta 456, 283 (2002)

    Article  CAS  Google Scholar 

  38. M.M. Osman, S.A. Kholeif, A.A.M. Namem, Microchim. Acta 143, 25 (2003)

    Article  CAS  Google Scholar 

  39. P.K. Jal, S. Patel, B.K. Mishra, Talanta 62, 1005 (2004)

    Article  CAS  Google Scholar 

  40. A.M. Ashrafi, K. Vytřas, Electrochim. Acta 73, 112 (2012)

    Article  CAS  Google Scholar 

  41. S.D. Borgo, V. Jovanovski, S.B. Hocevar, Electrochim. Acta 88, 713 (2013)

    Article  Google Scholar 

  42. S. Yang, R. Yang, G. Li, L. Qu, J. Li, L. Yu, J. Electroanal. Chem. 639, 77 (2010)

    Article  CAS  Google Scholar 

  43. W.J. Yi, Y. Li, G. Ran, H.Q. Luo, N.B. Li, Sens. Actuators B 166–167, 544 (2012)

    Article  Google Scholar 

  44. W. Yantasee, Y. Lin, G.E. Fryxell, B.J. Busche, Anal. Chim. Acta 502, 207 (2004)

    Article  CAS  Google Scholar 

  45. M.P.N. Bui, C.A. Li, K.N. Han, X.H. Pham, G.H. Seong, Analyst 8, 1888 (2012)

    Google Scholar 

  46. W.P. See, Sh Nathan, L.Y. Heng, J. Sens. 2011, 1 (2011)

    Google Scholar 

  47. R.O. Kadara, J.D. Newman, I.E. Tothill, Anal. Chim. Acta 493, 95 (2003)

    Article  CAS  Google Scholar 

  48. M. Slavec, S.B. Hocevar, L. Baldrianova, E. Tesarova, I. Svancara, B. Ogorevc, K. Vytras, Electroanalysis 22, 1617 (2010)

    Article  CAS  Google Scholar 

  49. F. Elmali, G. Alpodogan, S. Sungur, Turk. J. Chem. 24, 299 (2000)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahan Bakhsh Raoof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidian, M., Raoof, J.B., Hosseini, S.R. et al. Determination of copper ion by square wave anodic stripping voltammetry at antimony trioxide-modified carbon nanotube paste electrode. J IRAN CHEM SOC 14, 1263–1270 (2017). https://doi.org/10.1007/s13738-017-1077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1077-1

Keywords

Navigation