Skip to main content
Log in

Nanosilica molybdic acid: synthesis, characterization and application as a green and reusable catalyst for the Pechmann condensation

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Nanosilica molybdic acid (SMA NPs) was founded as an efficient and recyclable nanocatalyst for the synthesis of coumarin derivatives in excellent yields with good purity. Nano-SMA as a new solid acid was characterized by X-ray fluorescence, X-ray diffraction, energy-dispersive X-ray analyzer, transmission electron microscopy and Fourier transform infrared spectroscopy. Coumarin derivatives were obtained via the Pechmann condensation reaction of phenols and β-ketoesters at 80 °C under solvent-free conditions. The main advantages of the present procedure are high yields, shorter reaction time and green chemistry procedure, simple work-up and inexpensive and reusability of the catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Scheme 3
Fig. 8

Similar content being viewed by others

References

  1. B. Morak-Miodawska, K. Pluta, Heterocycles 78, 1289 (2009)

    Article  Google Scholar 

  2. M. Moreno-Manas, R. Pleixats, Acc. Chem. Res. 36, 638 (2003)

    Article  CAS  Google Scholar 

  3. K. Niknam, M.A. Zolfigol, T. Sadabadi, A. Nejati, J. Iran. Chem. Soc. 3, 318 (2006)

    Article  CAS  Google Scholar 

  4. B. Karimi, D. Zareyee, Org. Lett. 10, 3989 (2008)

    Article  CAS  Google Scholar 

  5. J.A. Melero, R.V. Grieken, G. Morales, Chem. Rev. 106, 3790 (2006)

    Article  CAS  Google Scholar 

  6. B. Karimi, M. Khalkhali, J. Mol. Catal. A Chem. 232, 113 (2005)

    Article  CAS  Google Scholar 

  7. M.E. Riveiro, N.D. Kimpe, A. Moglioni, R. Vazquez, F. Monczor, C. Shayo, C. Davio, Curr. Med. Chem. 17, 1325 (2010)

    Article  CAS  Google Scholar 

  8. L. Wu, X. Wang, W. Xu, F. Farzaneh, R. Xu, Curr. Med. Chem. 16, 4236 (2006)

    Article  Google Scholar 

  9. F. Borges, F. Roleira, N. Milhazes, L. Santana, E. Uriarte, Curr. Med. Chem. 12, 887 (2005)

    Article  CAS  Google Scholar 

  10. X.M. Peng, G.L.V. Damu, C.H. Zhou, Curr. Pharm. Des. 19, 3884 (2013)

    Article  CAS  Google Scholar 

  11. A. Lacy, R. O’Kennedy, Curr. Pharm. Des. 10, 3797 (2004)

    Article  CAS  Google Scholar 

  12. I. Kostova, Med. Chem. 5, 29 (2005)

    CAS  Google Scholar 

  13. M.A. Musa, J.S. Cooperwood, M.O.F. Khan, Curr. Med. Chem. 15, 2664 (2008)

    Article  CAS  Google Scholar 

  14. M.V. Kulkarni, G.M. Kulkarni, C.H. Lin, C.M. Sun, Curr. Med. Chem. 13, 2795 (2006)

    Article  CAS  Google Scholar 

  15. C. Kontogiorgis, A. Detsi, D.H. Litina, Expert Opin. Ther. Pat. 22, 437 (2012)

    Article  CAS  Google Scholar 

  16. K.V. Sashidhara, S.R. Avula, K. Sharma, G.R. Palnati, S.R. Bathula, Eur. J. Med. Chem. 60, 120 (2013)

    Article  CAS  Google Scholar 

  17. R.J. Naik, M.V. Kulkarni, K.S.R. Pai, P.G. Nayak, Chem. Biol. Drug Des. 80, 516 (2012)

    Article  CAS  Google Scholar 

  18. M.A.P. Martins, C.P. Frizzo, D.N. Moreira, L. Buriol, P. Machado, Chem. Rev. 109, 4140 (2009)

    Article  CAS  Google Scholar 

  19. S. Ghodke, U. Chudasama, Appl. Catal. A 453, 219 (2013)

    Article  CAS  Google Scholar 

  20. B.M. Reddy, M. Patil, P. Lakshmanan, J. Mol. Catal. A Chem. 256, 290 (2006)

    Article  CAS  Google Scholar 

  21. S. Khodabakhshi, Org. Chem. Int. 2012, 1 (2012)

    Article  Google Scholar 

  22. B. Karami, M. Kiani, Catal. Commun. 14, 62 (2011)

    Article  CAS  Google Scholar 

  23. M. Maheswara, V. Siddaiah, G. Lakishmi, V. Damu, Y.K. Rao, C.V. Rao, J. Mol. Catal. A Chem. 255, 49 (2006)

    Article  CAS  Google Scholar 

  24. A. Amoozadeh, M. Ahmadzadeh, E. Kolvari, J. Chem. 2013, 1 (2013)

    Article  Google Scholar 

  25. K. Jung, Y.J. Park, J.S. Ryu, Synth. Commun. 38, 4395 (2008)

    Article  CAS  Google Scholar 

  26. J. Albadi, F. Shirini, J. Abasi, N. Armand, T. Motaharizadeh, C. R. Chim. 16, 407 (2013)

    Article  CAS  Google Scholar 

  27. G.M. Nazeruddin, M.S. Pandharpatte, K.B. Mulani, C. R. Chim. 15, 91 (2012)

    Article  CAS  Google Scholar 

  28. S. Ghodke, U. Chudasama, Appl. Catal. A Gen. 453, 219 (2013)

    Article  CAS  Google Scholar 

  29. A. Cornelis, P. Laszlo, Synthesis 10, 909 (1985)

    Article  Google Scholar 

  30. B. Karami, M. Kiani, M.A. Hoseini, Chin. J. Catal. 35, 1206 (2014)

    Article  CAS  Google Scholar 

  31. B. Karami, M. Kiani, J. Chin. Chem. Soc. 61, 213 (2014)

    Article  CAS  Google Scholar 

  32. M. Kiani, B. Karami, J. Chin. Chem. Soc. 62, 756 (2015)

    Article  CAS  Google Scholar 

  33. H. Karade, M. Sathe, M.P. Kaushik, Catal. Commun. 8, 741 (2007)

    Article  CAS  Google Scholar 

  34. T. Brezesinski, J. Wang, S.H. Tolbert, B. Dunn, Nat. Mater. 9, 146 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Yasouj University of Iran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahtab Kiani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 515 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, M., Karami, B. Nanosilica molybdic acid: synthesis, characterization and application as a green and reusable catalyst for the Pechmann condensation. J IRAN CHEM SOC 14, 655–663 (2017). https://doi.org/10.1007/s13738-016-1016-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-1016-6

Keywords

Navigation