Skip to main content

Advertisement

Log in

The role of counter-anions in photocatalytic reduction of Ni(II) with a trace amount of titania nanoparticles

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The reduction of Ni(II) ion, originated from nitrate or sulfate salts, was investigated based on photo-generated electrons in UV-irradiated TiO2 aqueous suspensions. Design of experiments, modeling, and process optimization were performed using central composite design of response surface methodology. Influence of pH, temperature, and nickel concentration was investigated based on percentage of reduction efficiency (RE). Under operating conditions of pH = 9.3, T = 40 °C, [Ni(II)]o = 5 mg L−1, [TiO2] = 100 mg L−1 and after 90 min treatments, 64.8 and 76.1 % RE were achieved for nitrate and sulfate counter-anions, respectively. The higher efficiency obtained with sulfate anion was attributed to the more ionic strength and its interaction with titania nanoparticles. Rate of Ni(II) ions reduction, originated from both of the nickel salts, obeys pseudo-first-order kinetic model. As a relevant criterion, the electrical energy consumption and other criteria were evaluated and were compared with other previously reported processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.M. Joshi, B.N. Patil, D.S. Shirsath, V.S. Shrivastava, Adv. Appl. Sci. Res. 2, 445–454 (2011)

    CAS  Google Scholar 

  2. S. Veli, B. Alytiz, J. Hazard. Mater. 149, 226–233 (2007)

    Article  CAS  Google Scholar 

  3. M. Caicedo, J.J. Jacobs, A. Reddy, N.J. Hallab, J. Biomed. Mater. Res. 86, 905–913 (2008)

    Article  Google Scholar 

  4. M.A. Barakat, Y.T. Chen, C.P. Huang, Appl. Catal. B Environ. 53, 13–20 (2004)

    Article  CAS  Google Scholar 

  5. D. Chen, A.K. Ray, Chem. Eng. Sci. 56, 1561–1570 (2001)

    Article  CAS  Google Scholar 

  6. M. Shirzad Siboni, M.T. Samadi, J.K. Yang, S.M. Lee, Desalin. Water Treat. 40, 77–83 (2012)

    Article  CAS  Google Scholar 

  7. E. Malkoc, Y. Nuhoglu, J. Hazard. Mater. 135, 328–336 (2006)

    Article  CAS  Google Scholar 

  8. S. Lacour, J.C. Bollinger, B. Serpaud, D. Chantron, R. Arcos, Anal. Chem. Acta 428, 121–132 (2001)

    Article  CAS  Google Scholar 

  9. W. Wu, J.J. Peng, J. Taiwan Inst. Chem. Eng. 42, 498–505 (2011)

    Article  CAS  Google Scholar 

  10. D.S. Bhatkhande, V.G. Pangarkar, A.A. Beenackers, J. Chem. Technol. Biotechnol. 77, 102–116 (2001)

    Article  Google Scholar 

  11. J. Saien, A. Azizi, A.R. Soleymani, Sep. Purif. Technol. 134, 187–195 (2014)

    Article  CAS  Google Scholar 

  12. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B Environ. 42, 319–335 (2003)

    Article  CAS  Google Scholar 

  13. R.S. Thakur, R. Chaudhary, C. Singh, Desalin. Water Treat. 56, 1335–1363 (2015)

    Article  CAS  Google Scholar 

  14. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. 44, 2997–3027 (2010)

    Article  CAS  Google Scholar 

  15. N. Bao, G. Wu, J. Niu, Q. Zhang, S. He, J. Wang, J. Alloys Compd. 599, 40–48 (2014)

    Article  CAS  Google Scholar 

  16. T. Lavanya, K. Satheesh, M. Dutta, N.V. Jaya, N. Fukata, J. Alloys Compd. 615, 643–650 (2014)

    Article  CAS  Google Scholar 

  17. M. Abdullah, G.K.C. Low, R.W. Matthews, J. Phys. Chem. 94, 6820–6825 (1990)

    Article  CAS  Google Scholar 

  18. H. Zhu, M. Zhang, Z. Xia, G.K.C. Low, Water Res. 29, 2681–2688 (1995)

    Article  CAS  Google Scholar 

  19. C.R. Chenthamarakshan, H. Yang, Y. Ming, K. Rajeshwar, J. Electroanal. Chem. 494, 79–86 (2000)

    Article  CAS  Google Scholar 

  20. J. Saien, A. Azizi, Process Saf. Environ. Prot. 95, 114–125 (2015)

    Article  CAS  Google Scholar 

  21. J. Saien, H. Delavari, A.R. Solymani, J. Hazard. Mater. 177, 1031–1039 (2010)

    Article  CAS  Google Scholar 

  22. K. Kabra, R. Chaudhary, R.L. Sawhney, Environ. Prog. 27, 487–495 (2008)

    Article  CAS  Google Scholar 

  23. M. Shirzad Siboni, M.T. Samadi b, J.K. Yang, S.M. Lee, Environ. Technol. 32, 1573–1579 (2011)

    Article  CAS  Google Scholar 

  24. J. DeZuane, Handbook of Drinking Water Quality: Standards and Controls (Van Nostrand Reinhold, New York, 1990)

    Google Scholar 

  25. L.S. Clesceri, A.E. Greenberg, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater (American Public Health Association, Washington, DC, 1998)

    Google Scholar 

  26. D.C. Montgomery, Design and Analysis of Experiments, 5th edn. (Wiley, New York, 2001)

    Google Scholar 

  27. R.A. Burns, J.C. Crittenden, D.W. Hand, V.H. Selzer, L.L. Sutter, S.M. Salman, J. Environ. Eng. 125, 77–85 (1999)

    Article  CAS  Google Scholar 

  28. J.M. Meichtry, C.C. Justin, G. Custoa, M.I. Litter, Appl. Catal. B Environ. 144, 189–195 (2014)

    Article  CAS  Google Scholar 

  29. L.G. Devi, N. Kottam, B.N. Murthy, S.G. Kumar, J. Mol. Catal. A Chem. 328, 44–52 (2010)

    Article  CAS  Google Scholar 

  30. F. Jiang, Z. Zheng, Z.Y. Xu, S.R. Zheng, Z.B. Guo, L.Q. Chen, J. Hazard. Mater. 134, 94–103 (2006)

    Article  CAS  Google Scholar 

  31. S.K. Samantaray, P. Mohapatra, K. Parida, J. Mol. Catal. A Chem. 198, 277–287 (2003)

    Article  CAS  Google Scholar 

  32. N.S. Begum, H.M.F. Ahmed, K.R. Gunashekar, Bull. Mater. Sci. 31, 747–751 (2008)

    Article  CAS  Google Scholar 

  33. P.P. Hankare, R.P. Patil, A.V. Jadhav, R.S. Pandav, K.M. Garadkar, R. Sasikala, A.K. Tripathi, J. Alloys Compd. 509, 2160–2163 (2011)

    Article  CAS  Google Scholar 

  34. P. Priyadharsini, A. Pradeep, P. Sambasiva Rao, G. Chandrasekaran, Mater. Chem. Phys. 116, 207–213 (2009)

    Article  CAS  Google Scholar 

  35. P. Prieto, V. Nistor, K. Nouneh, M. Oyama, M. Abd-Lefdil, R. Diaz, Appl. Surf. Sci. 258, 8807–8813 (2012)

    Article  CAS  Google Scholar 

  36. D.F. Ollis, E. Pelizzetti, N. Serpone, Environ. Sci. Technol. 25, 1523–1529 (1991)

    Article  Google Scholar 

  37. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B Environ. 49, 1–14 (2004)

    Article  CAS  Google Scholar 

  38. K. Rajeshwar, J. Appl. Electrochem. 25, 1067–1082 (1995)

    Article  CAS  Google Scholar 

  39. J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman, Pure Appl. Chem. 73, 627–637 (2001)

    Article  CAS  Google Scholar 

  40. J. Saien, A. Azizi, A.R. Soleymani, J. Iran. Chem. Soc. 11, 1439–1448 (2014)

    Article  CAS  Google Scholar 

  41. US Government Energy Information Administration, Independent Statistics and Analysis (2015). http://www.eia.doe.gov

Download references

Acknowledgments

The authors wish to thank the university authorities for providing the financial support to carry out this project. The authors also acknowledge Evonik industries for supplying TiO2 P-25 as a gift for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Saien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saien, J., Ghamari, F. & Azizi, A. The role of counter-anions in photocatalytic reduction of Ni(II) with a trace amount of titania nanoparticles. J IRAN CHEM SOC 13, 2247–2255 (2016). https://doi.org/10.1007/s13738-016-0943-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0943-6

Keywords

Navigation