Skip to main content
Log in

Effect of the substitutional groups on the electrochemistry, kinetic of thermal decomposition and kinetic of substitution of some uranyl Schiff base complexes

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Uranyl(VI) complexes, [UO2(X-saloph)(solvent)], where saloph denotes N,N’-bis(salicylidene)-1,2-phenylenediamine and X = NO2, Cl, Me, H; were synthesized and characterized by 1H NMR, IR, UV–Vis spectroscopy, thermal gravimetry (TG), cyclic voltammetry, elemental analysis (C.H.N) and X-ray crystallography. X-ray crystallography of [UO2(4-nitro-saloph)(DMF)] revealed coordination of the uranyl by the tetradentate Schiff base ligand and one solvent molecule, resulting in seven-coordinated uranium. The complex of [UO2(4-nitro-saloph)(DMF)] was also synthesized in nano form. Transmission electron microscopy image showed nano-particles with sizes between 30 and 35 nm. The TG method and analysis of Coats-Redfern plots revealed that the kinetics of thermal decomposition of the complexes is of the first-order in all stages. The kinetics and mechanism of the exchange reaction of the coordinated solvent with tributylphosphine was investigated by spectrophotometric method. The second-order rate constants at four temperatures and the activation parameters showed an associative mechanism for all corresponding complexes with the following trend: 4-Nitro > 4-Cl > H > 4-Me. It was concluded that the steric and electronic properties of the complexes were important for the reaction rate. For analysis of anticancer properties of uranyl Schiff base complexes, cell culture and MTT assay was carried out. These results showed a reduction of jurkat cell line concentration across the complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V.P. Lozitsky, V.E. Kuzmin, A.G. Artemenko, R.N. Lozitska, A.S. Fedtchouk, E.N. Muratov, A.K. Mescheriakov, SAR QSAR Environ. Res. 16, 219 (2005)

    Article  Google Scholar 

  2. D. Sinha, A.K. Tiwari, S. Singh, G. Shukla, P. Mishra, H. Chandra, A.K. Mishra, Eur. J. Med. Chem. 43, 160 (2008)

    Article  CAS  Google Scholar 

  3. S. Adsule, V. Barve, D. Chen, F. Ahmed, Q.P. Dou, S. Padhye, F.H. Sarkar, J. Med. Chem. 49, 7242 (2006)

    Article  CAS  Google Scholar 

  4. S. Ren, R. Wang, K. Komatsu, P. Bonaz-Krause, Y. Zyrianov, C.E. McKenna, C. Csipke, Z.A. Tokes, E.J. Lien, J. Med. Chem. 45, 410 (2002)

    Article  CAS  Google Scholar 

  5. Z.H. Abd El-Wahab, M.R. El-Sarrag, Spectrochim. Acta Part A 60, 271 (2004)

    Article  CAS  Google Scholar 

  6. E. Yoshida, S. Yamada, Bull. Chem. Soc. Jpn. 40, 1395 (1967)

    Article  CAS  Google Scholar 

  7. A. Elmali, C.T. Zeyrek, Y. Elerman, T.N. Durlu, J. Chem. Crystallogr. 30, 167 (2000)

    Article  CAS  Google Scholar 

  8. A.A. Soliman, W. Linert, Thermochim. Acta 338, 67 (1999)

    Article  CAS  Google Scholar 

  9. S. Zolezzi, A. Decinti, E. Spodine, Polyhedron 18, 897 (1999)

    Article  CAS  Google Scholar 

  10. G. Gordon, H. Taube, J. Inorg. Nucl. Chem. 16, 272 (1961)

    Article  CAS  Google Scholar 

  11. W. Jung, Y. Ikeda, H. Tomiyasu, H. Fukutomi, Bull. Chem. Soc. Jpn. 57, 2317 (1984)

    Article  CAS  Google Scholar 

  12. Y. Kato, H. Fukutomi, J. Inorg. Nucl. Chem. 38, 1323 (1976)

    Article  CAS  Google Scholar 

  13. K. Okuyama, Y. Ishikawa, Y. Kato, H. Fukutomi, Bull. Res. Lab. Nucl. React. 3, 39 (1978)

    CAS  Google Scholar 

  14. S.F. Lincoln, Pure Appl. Chem. 51, 2059 (1979)

    Article  CAS  Google Scholar 

  15. H. Tomiyasu, H. Fukutomi, Bull. Res. Lab. Nucl. React. 7, 57 (1982)

    CAS  Google Scholar 

  16. E. Comini, Anal. Chim. Acta 568, 28 (2006)

    Article  CAS  Google Scholar 

  17. N. Kocak, M. Sahin, S. Kucukkolbasi, Z.O. Erdogan, Int. J. Biol. Macromol. 51, 1159 (2012)

    Article  CAS  Google Scholar 

  18. H.L. Karlsson, J. Gustafsson, P. Cronholm, L. Moller, Toxicol. Lett. 188, 112 (2009)

    Article  CAS  Google Scholar 

  19. L. Palatinus, G. Chapuis, J. Appl. Cryst. 40, 786 (2007)

    Article  CAS  Google Scholar 

  20. V. Petricek, M. Dusek, L. Palatinus, Z. Kristallogr. 229, 345 (2014)

    CAS  Google Scholar 

  21. T. Mossman, J. Immunol. Methods 65, 55 (1983)

    Article  Google Scholar 

  22. D.J. Evans, P.C. Junk, M.K. Smith, Polyhedron 21, 2421 (2002)

    Article  CAS  Google Scholar 

  23. K. Mizuoka, Y. Ikeda, Inorg. Chem. 42, 3396 (2003)

    Article  CAS  Google Scholar 

  24. S.Y. Ebrahimipour, J.T. Mague, A. Akbari, R. Takjoo, J. Mol. Struct. 1028, 148 (2012)

    Article  Google Scholar 

  25. M. Ebel, D. Rehder, Inorg. Chem. 45, 7083 (2006)

    Article  CAS  Google Scholar 

  26. D.N. Kumar, B.S. Garg, Spectrochim. Acta, Part A 64, 141 (2006)

    Article  Google Scholar 

  27. U. Casellato, S. Tamburini, P. Tomasin, P.A. Vigato, Inorg. Chim. Acta 341, 118 (2002)

    Article  CAS  Google Scholar 

  28. M.S. Bharara, K. Heflin, S. Tonks, K.L. Strawbridge, A. E. V. Gorden. Dalton Trans. 10, 2966 (2008)

    Article  Google Scholar 

  29. A.H. Kianfar, M. Dostani, Spectrochim. Acta, Part A 82, 69 (2011)

    Article  CAS  Google Scholar 

  30. Z. Asadi, F. Golzard, V. Eigner, M. Dusek, J. Coord. Chem. 66, 3629 (2013)

    Article  CAS  Google Scholar 

  31. M.S. Refat, M.Y. El-Sayed, A.M.A. Adam, J. Mol. Struct. 1038, 62 (2013)

    Article  CAS  Google Scholar 

  32. Z. Asadi, M.R. Shorkaei, Spectrochim. Acta, Part A 105, 344 (2013)

    Article  CAS  Google Scholar 

  33. A.W. Coats, J.P. Redfern, Nature 201, 68 (1964)

    Article  CAS  Google Scholar 

  34. Z. Asadi, M. Asadi, F.D. Firuzabadi, R. Yousefi, M. Jamshidi, J. Iran. Chem. Soc. 11, 423 (2014)

    Article  CAS  Google Scholar 

  35. H.C. Hardwick, D.S. Royal, M. Helliwell, S.J.A. Pope, L. Ashton, R. Goodacred, C.A. Sharrad, Dalton Trans. 40, 5939 (2011)

    Article  CAS  Google Scholar 

  36. Z. Asadi, M. Asadi, F.D. Firuzabadi, Int. J. Chem. Kinet. 45, 795 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Shiraz University Research Council for its financial support. The crystallographic part was supported by the project 14-03276S of the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Asadi.

Appendix 1: Supplementary material

Appendix 1: Supplementary material

CCDC 914883 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, Z., Nasrollahi, R., Dusek, M. et al. Effect of the substitutional groups on the electrochemistry, kinetic of thermal decomposition and kinetic of substitution of some uranyl Schiff base complexes. J IRAN CHEM SOC 13, 913–924 (2016). https://doi.org/10.1007/s13738-016-0807-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0807-0

Keywords

Navigation