Skip to main content
Log in

Preparation of Cu nanoparticles-modified PA6 composites using CuO as filler

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

This work focuses on the preparation of copper nanoparticles-modified polyamide 6 composites (denoted as nano-Cu/PA6) by in situ polymerization, with which cupric oxide as metallic copper source is directly reduced to metallic copper in the process of the opening-ring polymerization of ε-caprolactam only using the reducing atmosphere of reaction system. The obtained composites are characterized by means of transmission electron microscopy, X-ray diffraction, laser granulometry instrument, and ultraviolet–visible absorption spectroscopy. Moreover, the friction and wear resistance, mechanical strength, and antistatic performance of as-prepared composites are also readily evaluated. The results show that cupric oxide as filler is reduced to metallic copper and the as-reduced copper nanoparticles with 4–5-nm-size clusters separately disperse in polyamide 6 (PA6) matrix. Additionally, the addition content (mass fraction) of cupric oxide has significant effect on the crystalline form of PA6, and γ crystalline form of PA6 is predominant when higher dosage of CuO is introduced to fabricating nano-Cu/PA6 composites. Moreover, introducing a proper amount of CuO filler favors to generate nano-Cu/PA6 composites with improved mechanical properties and wear resistance. Particularly, nano-Cu/PA6 composite prepared at a CuO content of 0.5 % possesses the best tensile strength and wear resistance, showing promising application as a functional polymer–matrix composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Nacev, C. Beni, O. Bruno, B. Shapiro, J. Magn. Magn. Mater. 323, 651 (2011)

    Article  CAS  Google Scholar 

  2. M.R. Saeri, A. Barzegar, H. Ahmadi Moghadam, Ceram. Int. 37, 3083 (2011)

    Article  CAS  Google Scholar 

  3. J.H. Kim, E.K. Kim, C.H. Lee, M.S. Song, Y.H. Kim, J. Kim, Physica. E 26, 432 (2005)

    Article  CAS  Google Scholar 

  4. S.J. Guo, S.J. Dong, J. Mater. Chem. 21, 16704 (2011)

    Article  CAS  Google Scholar 

  5. G.M. Francis, L. Kuipers, J.R.A. Cleaver, R.E. Palmer, J. Appl. Phys. 79, 2942 (1996)

    Article  CAS  Google Scholar 

  6. L.L. Wang, X.C. Ma, Y. Qi, P. Jiang, J. Jiao, X.H. Bao, J.F. Jia, Q.K. Xue, J. Chin. Electron. Microsc. Soc. 24, 1 (2005)

    Google Scholar 

  7. A.Y. Yin, C. Wen, W.L. Dai, K.N. Fan, Appl. Surf. Sci. 257, 5844 (2011)

    Article  CAS  Google Scholar 

  8. R. Richards, H. Bonnemann, Towards Biomedical Applications (Weinheim, Wiley-VCH, 2005)

    Google Scholar 

  9. M. Murariu, L. Bonnaud, P. Yoann, G. Fontaine, Polym. Degrad. Stab. 95, 374 (2010)

    Article  CAS  Google Scholar 

  10. M.Q. Zhao, L. Sun, R.M. Crooks, J. Am. Chem. Soc. 120, 4877 (1998)

    Article  CAS  Google Scholar 

  11. H. Liu, M.W. Shen, J.L. Zhao, R. Guo, X.Y. Cao, G.X. Zhang, X.Y. Shi, Colloids. Surf. B 94, 58 (2012)

    Article  CAS  Google Scholar 

  12. C. Peng, H. Wang, R. Guo, R. Guo, M.W. Shen, X.Y. Cao, M.F. Zhu, G.X. Zhang, X.Y. Shi, J. Appl. Polym. Sci. 119, 1673 (2011)

    Article  CAS  Google Scholar 

  13. G.Y. Xu, H. Wang, C.W. Cheng, H.Q. Zhang, J.M. Cao, G.B. Ji, Trans. Nonferrous Met. Soc. China. 16, 105 (2006)

    Article  CAS  Google Scholar 

  14. J.F. Zhu, Y.J. Zhu, J. Phys. Chem. B 110, 8593 (2006)

    Article  CAS  Google Scholar 

  15. S.V. Vasilyeva, M.A. Vorotyntsev, I. Bezverkhyy, E. Lesniewska, O. Heintz, R. Chassagnon, J. Phys. Chem. C 112, 19878 (2008)

    Article  CAS  Google Scholar 

  16. I. Lisiecki, M.P. Pileni, J. Am. Chem. Soc. 115, 3887 (1993)

    Article  CAS  Google Scholar 

  17. G. Mie, Ann. Phys. (Germany) 25, 377 (1908)

    Article  CAS  Google Scholar 

  18. JCh. Ho, K.H. Wei, Macromolecules 33, 5181 (2000)

    Article  CAS  Google Scholar 

  19. T.D. Fornes, D.R. Paul, Polymer 44, 3945 (2003)

    Article  CAS  Google Scholar 

  20. Z.D. Zhao, W.T. Zheng, H.W. Tian, W.X. Yu, D. Han, B. Li, Mater. Lett. 61, 925 (2007)

    Article  CAS  Google Scholar 

  21. D. Mott, J. Galkowski, L. Wang, J. Luo, C.J. Zhong, Langmuir 23, 5740 (2007)

    Article  CAS  Google Scholar 

  22. S. Mandal, A. Gole, N. Lala, R. Gonnade, V. Ganvir, M. Sastry, Langmuir 17, 6262 (2001)

    Article  CAS  Google Scholar 

  23. H.W. Hu, Organic Chemistry, 2nd edn. (High Education Press, China, 2001)

    Google Scholar 

Download references

Acknowledgments

This research is financially supported by the Ministry of Science and Technology of China (project of ‘973’ plan; Grant No. 2013CB63303), Henan Provincial Natural Science Foundation of China (Grant No. 1121012104000 and 112300410184), National Natural Science Foundation of China (Grant No. 21371050) and Program for Changjiang Scholars and Innovative Research Team in University (No. PCSIRT1126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Q., Li, X. & Zhang, Z. Preparation of Cu nanoparticles-modified PA6 composites using CuO as filler. J IRAN CHEM SOC 11, 1717–1721 (2014). https://doi.org/10.1007/s13738-014-0444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-014-0444-4

Keywords

Navigation