Skip to main content
Log in

Improving content-based image retrieval with compact global and local multi-features

  • Regular Paper
  • Published:
International Journal of Multimedia Information Retrieval Aims and scope Submit manuscript

Abstract

The accuracy of content-based image retrieval (CBIR) systems is significantly affected by the discriminatory power of image features and distance measures. This paper performs an investigation towards finding the best local and global features and distance measures for content-based image retrieval. It provides insights into the trade-offs regarding computational costs, memory utilization and accuracy on several standard datasets which include MIRFLICKR, Corel, Holidays and ZuBuD. First, low-dimensional global and local features are extracted individually to generate a bank of small image features. Second, multilevel descriptor forms are utilized to produce highly discriminative image representations based on multi-features aggregation scheme. The relationship is highlighted between features (local and global) and other retrieval factors such as quantization approaches, visual codebooks, distance measures, vectorization methods, memory and retrieval speed. The resulting composite image representations are compact, i.e., only 32–64 vector dimension and 32–128 codebook size, and preserve high discriminative levels which further boost the retrieval accuracy and performance. The experimental results show that the presented multi-features image representations are efficient and outperform many competitive methods of the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. http://wang.ist.psu.edu/docs/related/.

References

  1. Alzu’bi A, Amira A, Ramzan N (2015) Semantic content-based image retrieval: a comprehensive study. J Vis Commun Image Represent 32:20–54

    Article  Google Scholar 

  2. Li J, Allinson NM (2013) Relevance feedback in content-based image retrieval: a survey. In: Handbook on neural information processing. Springer Berlin, Heidelberg, pp 433–469

  3. Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv (CSUR) 40(2):5

    Article  Google Scholar 

  4. Liu Y, Zhang D, Lu G, Ma WY (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recognit 40(1):262–282

    Article  MATH  Google Scholar 

  5. Duanmu X (2010) Image retrieval using color moment invariant. In: The seventh international conference on information technology: new generations (ITNG), 12–14, pp 200–203

  6. Qiu G (2003) Color image indexing using BTC. IEEE Trans Image Process 12(1):93–101

    Article  Google Scholar 

  7. Talib A, Mahmuddin M, Husni H, George LE (2013) A weighted dominant color descriptor for content-based image retrieval. J Vis Commun Image Represent 24(3):345–360

    Article  Google Scholar 

  8. Shrivastava N, Tyagi V (2014) Content based image retrieval based on relative locations of multiple regions of interest using selective regions matching. Inf Sci 259:212–224

    Article  Google Scholar 

  9. Kwitt R, Uhl A (2010) Lightweight probabilistic texture retrieval. IEEE Trans Image Process 19(1):241–253

    Article  MathSciNet  Google Scholar 

  10. Lasmar NE, Berthoumieu Y (2014) Gaussian copula multivariate modeling for texture image retrieval using wavelet transforms. IEEE Trans Image Process 23(5):2246–2261

    Article  MathSciNet  Google Scholar 

  11. Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804

    Article  Google Scholar 

  12. Tamura H, Mori S, Yamawaki T (1978) Textural features corresponding to visual perception. IEEE Trans Syst Man Cybern 8(6):460–473

    Article  Google Scholar 

  13. Vogel J, Schiele B (2006) Performance evaluation and optimization for content-based image retrieval. Pattern Recognit 39(5):897–909

    Article  MATH  Google Scholar 

  14. Lee J, Nang J (2011) Content-based image retrieval method using the relative location of multiple ROIs. Adv Electr Comput Eng 11(3):85–90

    Article  Google Scholar 

  15. Hoàng N, Gouet-Brunet V, Rukoz M, Manouvrier M (2010) Embedding spatial information into image content description for scene retrieval. Pattern Recognit 43(9):3013–3024

    Article  MATH  Google Scholar 

  16. Wang S, Liu D, Gu F, Feng Yang HL (2012) Similar matching for images with complex spatial relations. J Comput Inf Syst 8:8727–8734

    Google Scholar 

  17. Jaworska T, Kacprzyk J, Marín N, Zadrożny S (2010) On dealing with imprecise information in a content based image retrieval system. In: Computational intelligence for knowledge-based systems design. Springer, Berlin, Heidelberg, pp 149–158

  18. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  19. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  20. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE Computer Society conference on computer vision and pattern recognition, CVPR, vol 1, pp 886–893

  21. Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: Computer vision-ECCV, pp 430–443

  22. Wang XY, Zhang BB, Yang HY (2014) Content-based image retrieval by integrating color and texture features. Multimed Tools Appl 68(3):545–569

    Article  MathSciNet  Google Scholar 

  23. Liu GH, Zhang L, Hou YK, Li ZY, Yang JY (2010) Image retrieval based on multi-texton histogram. Pattern Recognit 43(7):2380–2389

    Article  MATH  Google Scholar 

  24. Huang ZC, Chan P, Ng W, Yeung DS (2010) Content-based image retrieval using color moment and Gabor texture feature. In: IEEE international conference on machine learning and cybernetics (ICMLC), vol 2, pp 719–724

  25. Harris C, Stephens M (1988) A combined corner and edge detector. In: Alvey vision conference, vol 15, p 50

  26. Matas J, Chum O, Urban M, Pajdla T (2002) Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of British machine vision conference, pp 384–393

  27. Sivic J, Zisserman A (2003) Video Google: a text retrieval approach to object matching in videos. In: Ninth IEEE ICCV, pp 1470–1477

  28. Ke Y, Sukthankar R (2004) PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of IEEE CVPR, vol 2, p II-506

  29. Perronnin F, Dance C (2007) Fisher kernels on visual vocabularies for image categorization. In: IEEE CVPR’07, pp 1–8

  30. Jégou H, Perronnin F, Douze M, Sanchez J, Perez P, Schmid C (2012) Aggregating local image descriptors into compact codes. IEEE Trans Pattern Anal Mach Intell 34(9):1704–1716

    Article  Google Scholar 

  31. Iakovidou C, Anagnostopoulos N, Kapoutsis A, Boutalis Y, Lux M, Chatzichristofis SA (2015) Localizing global descriptors for content-based image retrieval. EURASIP J Adv Signal Process 1:1–20

    Google Scholar 

  32. ElAlami M (2014) A new matching strategy for content based image retrieval system. Appl Soft Comput 14:407–418

    Article  Google Scholar 

  33. Zhang Y, Zhaoxing Z, Han X (2009) Category specific SIFT descriptor and its combination with color information for content-based image retrieval. In: Proceedings of the 2nd ACM international conference on interaction sciences: information technology, culture and human, pp 685–690

  34. Deselaers T, Keysers D, Ney H (2008) Features for image retrieval: an experimental comparison. Inf Retr 11(2):77–107

    Article  Google Scholar 

  35. Walia E, Verma V (2016) Boosting local texture descriptors with Log-Gabor filters response for improved image retrieval. Int J Multimed Inf Retr 5(4):173–184

    Article  Google Scholar 

  36. Bosch A, Zisserman A, Munoz X (2007) Image classification using random forests and ferns. In: IEEE 11th ICCV, pp 1–8

  37. Alzu’bi A, Amira A, Ramzan N, Jaber T (2015) Robust fusion of color and local descriptors for image retrieval and classification. In: IEEE international conference on systems, signals and image processing (IWSSIP), pp 253–256

  38. Lee TS (1996) Image representation using 2D Gabor wavelets. IEEE Trans Pattern Anal Mach Intell 18(10):959–971

    Article  Google Scholar 

  39. Mallat S (1998) A wavelet tour of signal processing. Academic Press, San Diego

    MATH  Google Scholar 

  40. Costa A F, Humpire-Mamani G,Traina A J (2012) An efficient algorithm for fractal analysis of textures. In: 25th IEEE SIBGRAPI, pp 39–46

  41. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  42. Brahnam S, Jain LC, Nanni L, Lumini A (2014) Local binary patterns: new variants and applications. Springer, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  43. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  MATH  Google Scholar 

  44. Bianconi F, Harvey R, Southam P, Fernández A (2011) Theoretical and experimental comparison of different approaches for color texture classification. J Electron Imaging 20(4):043006–043006

    Article  Google Scholar 

  45. Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. Int J Comput Vis 60(1):63–86

    Article  Google Scholar 

  46. Wang Z, Fan B, Wu F (2011) Local intensity order pattern for feature description. In: ICCV, pp 603–610

  47. Arandjelović R, Zisserman A (2012) Three things everyone should know to improve object retrieval. In: IEEE CVPR, pp 2911–2918

  48. Tola E, Lepetit V, Fua P (2010) An efficient dense descriptor applied to wide-baseline stereo. IEEE Trans Pattern Anal Mach Intell 32(5):815–830

    Article  Google Scholar 

  49. Huiskes MJ, Thomee B, Lew MS (2010) New trends and ideas in visual concept detection: the MIR flickr retrieval evaluation initiative. I:n Multimedia information retrieval, pp 527– 536

  50. Vedaldi A, Fulkerson B (2010) VLFeat: an open and portable library of computer vision algorithms. In: Proceedings of the 18th ACM conference on multimedia, pp 1469–1472

  51. Jegou H, Douze M, Schmid C (2008) Hamming embedding and weak geometric consistency for large scale image search. In: ECCV, pp 304–317

  52. Perronnin F, Liu Y, Sánchez J, Poirier H (2010) Large-scale image retrieval with compressed fisher vectors. In: Proceedings of CVPR, pp 3384–3391

  53. Arandjelovic R, Zisserman A (2013) All about VLAD. In: CVPR, pp 1578–1585

  54. Delhumeau J, Gosselin P H, Jégou H, Pérez P (2013) Revisiting the VLAD image representation. In: ACM multimedia, pp 653–656

  55. Shao H, Svoboda T, Van Gool L (2003) Zubud-zurich buildings database for image based recognition. Technical report 260, Computer Vision Lab, Swiss Federal Institute of Technology, Switzerland

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Alzu’bi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzu’bi, A., Amira, A., Ramzan, N. et al. Improving content-based image retrieval with compact global and local multi-features. Int J Multimed Info Retr 5, 237–253 (2016). https://doi.org/10.1007/s13735-016-0109-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13735-016-0109-4

Keywords

Navigation