Skip to main content
Log in

Treatment of ramie fiber with different techniques: the influence of diammonium phosphate on interfacial adhesion properties of ramie fiber-reinforced polylactic acid composite

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Ramie fiber-reinforced polylactic acid (PLA) composites were successfully prepared by hot compression molding. Different treatment techniques were used to modify the surface of ramie fiber. The influence of diammonium phosphate (DAP) on the interfacial adhesion between ramie fiber and PLA composites was investigated by the contact angle measurements, FTIR and SEM analyses. The contact angle measurement results showed that alkali treatment combined with DAP was very efficient in decreasing the hydrophilicity of fibers. After treatment, the hydrophilicity of untreated ramie fiber from 5.9 ± 1.3 decreased to 2.0 ± 0.8 mJ/m2. The wettability of alkali/silane/DAP-treated ramie fiber/PLA composite was higher (95.4° ± 1.3°) than that of pure ramie fiber/PLA composite (87.3° ± 1.9°). The FTIR results were consistent with the wetting measurements as the increment of hydrophilicity. Thermal analysis indicated that DAP-modified ramie fiber/PLA composites exhibited a lower thermal decomposition temperature, unique decomposition behavior and more residual char formation at decomposition temperature. The tensile, flexural and impact properties of DAP-modified ramie fiber composites were comparable to those of untreated ramie fiber composite. Moreover, proper alignment and uniform distribution of ramie fibers within the PLA matrix were found to be excellent. The morphological structures observed by SEM showed that well-modified ramie fibers enhanced the failure of the PLA composites in tensile, flexural and impact tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf 35:371–376

    Article  Google Scholar 

  2. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 83:98–112

    Article  CAS  Google Scholar 

  3. Tran LQN, Yuan XW, Bhattacharyya D, Fuentes C, Van Vuure AW, Verpoest I (2015) Fiber-matrix interfacial adhesion in natural fiber composites. Int J Mod Phys B 29:1540018. doi:10.1142/S0217979215400184

    Article  CAS  Google Scholar 

  4. Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos A Appl Sci Manuf 41:499–505

    Article  Google Scholar 

  5. Wang Y, Qi R, Xiong C, Huang M (2011) Effects of coupling agent and interfacial modifiers on mechanical properties of poly(lactic acid) and wood flour biocomposites. Iran Polym J 20:281–294

    Google Scholar 

  6. Tran Huu N, Ogihara S, Nguyen Huy T, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos B Eng 42:1648–1656

    Article  Google Scholar 

  7. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424–432

    Article  CAS  Google Scholar 

  8. Li Z, Yu C (2014) Effect of peroxide and softness modification on properties of ramie fiber. Fiber Polym 15:2105–2111

    Article  CAS  Google Scholar 

  9. Shukor F, Hassan A, Islam MS, Mokhtar M, Hasan M (2014) Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled pla biocomposites. Mater Design 54:425–429

    Article  CAS  Google Scholar 

  10. Li S, Ren J, Yuan H, Yu T, Yuan W (2010) Influence of ammonium polyphosphate on the flame retardancy and mechanical properties of ramie fiber-reinforced poly(lactic acid) biocomposites. Polym Int 59:242–248

    Article  CAS  Google Scholar 

  11. Awaja F, Gilbert M, Kelly G, Fox B, Pigram PJ (2009) Adhesion of polymers. Prog Polym Sci 34:948–968

    Article  CAS  Google Scholar 

  12. Liu JC, Xu MJ, Lai T, Li B (2015) Effect of surface-modified ammonium polyphosphate with KH550 and silicon resin on the flame retardancy, water resistance, mechanical and thermal properties of intumescent flame retardant polypropylene. Ind Eng Chem Res 54:9733–9741

    Article  CAS  Google Scholar 

  13. Suardana NPG, Ku MS, Lim JK (2011) Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites. Mater Design 32:1990–1999

    Article  CAS  Google Scholar 

  14. Faludi G, Dora G, Imre B, Renner K, Moczo J, Pukanszky B (2014) PLA/lignocellulosic fiber composites: particle characteristics, interfacial adhesion, and failure mechanism. J Appl Polym Sci 131:39902

    Article  Google Scholar 

  15. Kaiser MR, Anuar HB, Samat NB, Razak SBA (2013) Effect of processing routes on the mechanical, thermal and morphological properties of PLA-based hybrid biocomposite. Iran Polym J 22:123–131

    Article  CAS  Google Scholar 

  16. Raichur AM, Wang XH, Parekh BK (2001) Estimation of surface free energy of pyrites by contact angle measurements. Miner Eng 14:65–75

    Article  CAS  Google Scholar 

  17. Baley C, Busnel F, Grohens Y, Sire O (2006) Influence of chemical treatments on surface properties and adhesion of flax fibre-polyester resin. Compos A Appl Sci Manuf 37:1626–1637

    Article  Google Scholar 

  18. Qaiss AEK, Bouhfid R, Essabir H (2014) Natural fibers reinforced polymeric matrix: thermal, mechanical and interfacial properties. Biomass and bioenergy: processing and properties. Springer, Cham, pp 225–245

    Google Scholar 

  19. Choi HY, Lee JS (2012) Effects of surface treatment of ramie fibers in a ramie/poly(lactic acid) composite. Fiber Polym 13:217–223

    Article  CAS  Google Scholar 

  20. Aiju J, Jianhing X, Hongwu W (2012) Effect of surface treatment on the morphology of sisal fibers in sisal/polylactic acid composites. J Reinf Plast Compos 31:621–630

    Article  Google Scholar 

  21. Zenkiewicz M (2006) New method of analysis of the surface free energy of polymeric materials calculated with owens-wendt and neumann methods. Polimery 51:584–587

    CAS  Google Scholar 

  22. Ge J, Turunen MPK, Kusevic M, Kivilahti JK (2003) Effects of surface treatment on the adhesion of copper to a hybrid polymer material. J Mater Res 18:2697–2707

    Article  CAS  Google Scholar 

  23. Akindoyo JO, Beg MDH, Ghazali S, Islam MR (2016) The effects of wettability, shear strength, and weibull characteristics of fiber-reinforced poly(lactic acid) composites. J Polym Eng 36:489–497

    Article  CAS  Google Scholar 

  24. Huang CJ, Li XL, Zhang YQ, Feng YH, Qu JP, He HZ, Shen HZ (2015) Properties of heat-treated sisal fiber/polylactide composites. J Thermoplast Compos Mater 28:777–790

    Article  CAS  Google Scholar 

  25. Huo S, Thapa A, Ulven CA (2013) Effect of surface treatments on interfacial properties of flax fiber-reinforced composites. Adv Compos Mater 22:109–121

    Article  CAS  Google Scholar 

  26. Cao Y, Sakamoto S, Goda K (2007) Effects of heat and alkali treatments on mechanical properties of kenaf fibers. In 16th International Conference on Composite Materials, ICCM-16—”A giant step towards environmental awareness: from green composites to aerospace”, July 8–13, 2007, Kyoto, Japan

  27. Corredor Gonzalez JT, Pinheiro Dillon AJ, Perez-Perez AR, Fontana R, Bergmann CP (2015) Enzymatic surface modification of sisal fibers (agave sisalana) by Penicillium echinulatum cellulases. Fiber Polym 16:2112–2120

    Article  Google Scholar 

  28. Orue A, Jauregi A, Pena-Rodriguez C, Labidi J, Eceiza A, Arbelaiz A (2015) The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Compos B Eng 73:132–138

    Article  CAS  Google Scholar 

  29. Bocz K, Szolnoki B, Marosi A, Tabi T, Wladyka-Przybylak M, Marosi G (2014) Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. Polym Degrad Stab 106:63–73

    Article  CAS  Google Scholar 

  30. Li Z, Yu C (2015) The effect of oxidation-reduction potential on the degumming of ramie fibers with hydrogen peroxide. J Text Inst 106:1251–1261

    Article  CAS  Google Scholar 

  31. Zafar MT, Maiti SN, Ghosh AK (2016) Effect of surface treatment of jute fibers on the interfacial adhesion in poly(lactic acid)/jute fiber biocomposites. Fiber Polym 17:266–274

    Article  CAS  Google Scholar 

  32. Jiang A, Xi J, Wu H (2012) Effect of surface treatment on the morphology of sisal fibers in sisal/polylactic acid composites. J Reinf Plast Compos 31:621–630

    Article  CAS  Google Scholar 

  33. Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos A Appl Sci Manuf 42:1189–1196

    Article  Google Scholar 

  34. Zhang H, Ming R, Yang G, Li Y, Li Q, Shao H (2015) Influence of alkali treatment on flax fiber for use as reinforcements in polylactide stereocomplex composites. Polym Eng Sci 55:2553–2558

    Article  CAS  Google Scholar 

  35. George M, Mussone PG, Bressler DC (2014) Surface and thermal characterization of natural fibres treated with enzymes. Ind Crops Prod 53:365–373

    Article  CAS  Google Scholar 

  36. Lee CH, Salit MS, Hassan MR (2014) A review of the flammability factors of kenaf and allied fibre reinforced polymer composites. Adv Mater Sci Eng. doi:10.1155/2014/514036

    Google Scholar 

  37. Kaiser MR, Anuar H, Razak SBA (2012) Improvement in thermomechanical properties of injection molded nano-modified hybrid biocomposite. J Thermoplast Compos Mater 27:992–1009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debeli, D.K., Guo, J., Li, Z. et al. Treatment of ramie fiber with different techniques: the influence of diammonium phosphate on interfacial adhesion properties of ramie fiber-reinforced polylactic acid composite. Iran Polym J 26, 341–354 (2017). https://doi.org/10.1007/s13726-017-0524-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0524-2

Keywords

Navigation