Skip to main content
Log in

Synthesis, characterization and curing behavior of propyl-tri(phenylethynyl)silane

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Propyl-tri(phenylethynyl)silane ((ph-C≡C)3–Si–CH2CH2CH3) monomer (PTPES) was synthesized via Grignard reaction of propyl-trichlorosilane and phenylacetylene in the presence of magnesium and ethylbromide. Its chemical structure was characterized by nuclear magnetic resonance spectroscopy (1H-NMR, 13C-NMR, and 29Si-NMR). The curing behavior and rheological characteristics of the PTPES were analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and rheology techniques. The corresponding kinetic parameters and curing mechanism were also discussed by four well-known kinetic methods, i.e., Kissinger, Ozawa, Flynn–Wall–Ozawa and Friedman methods. Results showed that PTPES possessed a low melting point of 75 °C, a high gelatinization temperature of 333 °C and wide processing window of 258 °C. The cure schedule of PTPES could be determined as follows: (312 °C, 1 h) + (339 °C, 2 h) + (355 °C, 1 h) by dynamic DSC which was further verified by FTIR and rheology. The activation energy E a was calculated as 122.83, 126.88 and 122.17 kJ/mol by Kissinger, Ozawa and Flynn–Wall–Ozawa methods, respectively. The pre-exponential factor lnA and the reaction orders n and m were 23.15 (s−1), 1.43 and 0.36, respectively. The autocatalytic kinetic model was found to be the best description of the curing process by the Friedman method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liu J, Lam JWY, Tang BZ (2009) Acetylenic polymers: syntheses, structures, and functions. Chem Rev 109:5799–5867

    Article  CAS  Google Scholar 

  2. Tan D, Wu X, Wang Y, Xu Y, Xing H (2016) Synthesis, characterization and curing behavior of methyl-tri(phenylethynyl)silane. Res Chem Intermed 42:4669–4681

    Article  CAS  Google Scholar 

  3. Guo K, Wang H, Li P, Zhu Y, Wang F, Qi H (2015) Boron-containing arylacetylene polymers as a novel carbon precursor: synthesis, thermal curing and carbonization. Mater Lett 160:314–317

    Article  CAS  Google Scholar 

  4. Bu X, Zhou Y, Huang F (2016) The strengthening and toughening effects of a novel octa(propargylpropylsulfide) POSS (OPPSP) on silicon-containing arylacetylene (PSA) resin. Mater Lett 174:21–23

    Article  CAS  Google Scholar 

  5. Wrackmeyer B, Khan E, Bayer S, Tok O, Klimkina E, Milius W (2010) Alkynylsilanes and alkynyl (vinyl) silanes. Synthesis, molecular structures and multinuclear magnetic resonance study. Zeitschrift- für Naturforschung B 65:725–744

    CAS  Google Scholar 

  6. Zhou Q, Feng X, Ni L, Chen J (2007) Thermal characteristics and pyrolysis of methyl-di (phenylethynyl) silane resin. J Appl Polym Sci 103:605–610

    Article  CAS  Google Scholar 

  7. Kim C, Jeong K, Jung I (2000) Progress toward limiting generation of dendritic ethynylsilanes (PhC≡C)4− nMenSi (n = 0–2). J Polym Sci Pol Chem 38:2749–2759

    Article  CAS  Google Scholar 

  8. Zhou Q, Feng X, Ni L, Chen J (2006) Novel heat resistant methyl-tri (phenylethynyl) silane resin: synthesis, characterization and thermal properties. J Appl Polym Sci 102:2488–2492

    Article  CAS  Google Scholar 

  9. Liu H, Harrod JF (1990) Copper (I) chloride catalyzed cross-dehydrocoupling reactions between silanes and ethynyl compounds. A new method for the copolymerization of silanes and alkynes. Can J Chem 68:1100–1105

    Article  CAS  Google Scholar 

  10. Kownacki I, Orwat B, Marciniec B, Kownacka A (2014) A new and efficient route for the synthesis of alkynyl functionalized silicon derivatives. Tetrahedron Lett 55:548–550

    Article  CAS  Google Scholar 

  11. Zhou Y, Huang F, Du L, Liang G (2015) Synthesis and properties of silicon-containing arylacetylene resins with polyhedral oligomeric silsesquioxane. Polym Eng Sci 55:316–321

    Article  CAS  Google Scholar 

  12. Jiang Y, Li X, Huang F, Zhou Y, Du L (2015) o-Carborane-containing poly(siloxane-arylacetylene)s with thermal and thermo-oxidative stabilities. J Macromol Sci Pure 52:476–484

    Article  CAS  Google Scholar 

  13. Iwasaki T, Shimizu R, Imanishi R, Kuniyasu H, Kambe N (2015) Copper-catalyzed regioselective hydroalkylation of 1, 3-dienes with alkyl fluorides and Grignard reagents. Angew Chem Int Ed 54:9347–9350

    Article  CAS  Google Scholar 

  14. Chen Q, Li Y, Dai Z, Ni L, Hu CP (2005) Synthesis and characterization of methyl-di (phenylethynyl) silane and its network polymer. Acta Chim Sin 63:254–258

    CAS  Google Scholar 

  15. Tan D, Shi T, Li Z (2011) Synthesis, characterization, and non-isothermal curing kinetics of two silicon-containing arylacetylenic monomers. Res Chem Intermed 37:831–845

    Article  CAS  Google Scholar 

  16. Tsuchimoto T, Fujii M, Iketani Y, Sekine M (2012) Dehydrogenative silylation of terminal Alkynes with hydrosilanes under zinc–pyridine catalysis. Adv Synth Catal 354(16):2959–2964

    Article  CAS  Google Scholar 

  17. Zhao S, Zhang G, Sun R, Wong CP (2014) Curing kinetics, mechanism and chemorheological behavior of methanol etherified amino/novolac epoxy systems. Express Polym Lett 8:95–106

    Article  Google Scholar 

  18. Luo Z, Wei L, Liu F, Zhao T (2007) Study on thermal cure and heat-resistant properties of N-(3-acetylenephenyl) maleimide monomer. Eur Polym J 43:3461–3470

    Article  CAS  Google Scholar 

  19. Wang H, Wang J, He XY, Feng TT, Ramdani N, Luan MJ, Liu WB, Xu XD (2014) Synthesis of novel furan-containing tetrafunctional fluorene-based benzoxazine monomer and its high performance thermoset. RSC Adv 4:64798–64801

    Article  CAS  Google Scholar 

  20. Sastri SB, Keller TM, Jones KM, Armistead JP (1993) Studies on cure chemistry of new acetylenic resins. Macromolecules 26:6171–6174

    Article  CAS  Google Scholar 

  21. Mabuda AI, Mamphweli NS, Meyer EL (2016) Model free kinetic analysis of biomass/sorbent blends for gasification purposes. Renew Sust Energ Rev 53:1656–1664

    Article  CAS  Google Scholar 

  22. Song X, Xu X (2016) Curing kinetics of pre-crosslinked carboxyl-terminated butadiene acrylonitrile (CTBN) modified epoxy blends. J Therm Anal Calorim 123:319–327

    Article  CAS  Google Scholar 

  23. Bai Y, Yang P, Zhang S, Li Y, Gu Y (2015) Curing kinetics of phenolphthalein–aniline-based benzoxazine investigated by non-isothermal differential scanning calorimetry. J Therm Anal Calorim 120:1755–1764

    Article  CAS  Google Scholar 

  24. Zhou Q, Ni L (2009) Thermal cure behavior and pyrolysis of methyl-tri(phenylethynyl) silane resin. J Appl Polym Sci 113(1):10–16

    Article  CAS  Google Scholar 

  25. Ren R, Xiong X, Ma X, Liu S, Wang J, Chen P, Zeng Y (2016) Isothermal curing kinetics and mechanism of DGEBA epoxy resin with phthalide-containing aromatic diamine. Thermochim Acta 623:15–21

    Article  CAS  Google Scholar 

  26. Liu C, Qu C, Wang C, Cao D, Wang D, Xiao W, Feng H, Liu P, Bai X (2016) Non-isothermal curing kinetics, chemorheological behaviour, and IR spectral study of two trifunctional phenylethynyl-terminated imide oligomers compared with the corresponding bifunctional structure. Prog React Kinet Mech 41:1–13

    Article  Google Scholar 

  27. Ke L, Hu D, Lu Y, Feng S, Xie Y, Xu W (2012) Copolymerization of maleimide-based benzoxazine with styrene and the curing kinetics of the resultant copolymer. Polym Degrad Stabil 97:132–138

    Article  CAS  Google Scholar 

  28. Bissette AJ, Fletcher SP (2013) Mechanisms of autocatalysis. Angew Chem Int Ed 52:12800–12826

    Article  CAS  Google Scholar 

  29. Sastri SB, Armistead JP, Keller TM (1995) Cure kinetics of a multisubstituted acetylenic monomer. Polymer 36:1449–1454

    Article  CAS  Google Scholar 

  30. Lehrle RS, Shortland A (1988) A study of the purification of methyl methacrylate suggests that the “thermal” polymerization of this monomer is initiated by adventitious peroxides. Eur Polym J 24:425–429

    Article  CAS  Google Scholar 

  31. Lu Y, Li M, Zhang Y, Hu D, Ke L, Xu W (2011) Synthesis and curing kinetics of benzoxazine containing fluorene and furan groups. Thermochim Acta 515:32–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the National Nature Science Foundation of China (Nos. 51507003, 51303005), the Educational Commission of Anhui Province of China (Nos. KJ2013A087 and KJ2013A095) and the Doctor Foundation of the Anhui University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, D., Wu, X., Wang, M. et al. Synthesis, characterization and curing behavior of propyl-tri(phenylethynyl)silane. Iran Polym J 25, 687–695 (2016). https://doi.org/10.1007/s13726-016-0457-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-016-0457-1

Keywords

Navigation