Skip to main content
Log in

A comparative spectroelectrochemistry of homo- and copolymerization of pyrrole and N-methylpyrrole with indole on a gold electrode

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Electrochemical formation and properties of intrinsically conducting homo- and copolymers of polypyrrole (PPy), poly-N-methylpyrrole (PNMPy), polyindole (PIn), poly(pyrrole-indole) [P(Py-In)], poly(N-methylpyrrole-indole) [P(NMPy-In)] on gold electrode were studied comparatively. Characterization of the samples was performed by cyclic voltammetry, in situ UV–Vis and FTIR spectroscopy methods, in situ resistance measurements and scanning electron microscopy (SEM) techniques. The voltammograms exhibited different behavior for various concentration ratios of the monomer in the feed with redox peaks observed at different positions. Positive shifts of the oxidation peaks were observed for copolymers synthesized using higher concentrations of monomer during the electropolymerization. In situ UV–Vis and FTIR spectroscopy results showed a spectroscopic behavior of the copolymers intermediate between those of the homopolymers. The resistance of copolymers generally grew with increasing (In)/(Py) and (In)/(NMPy) concentration ratio. This was most likely due to a smaller amount of pyrrole units in the copolymer backbone yielding a less extended π-conjugation system along the copolymer backbone. In comparison, the resistance of P(NMPy-In) was higher than that of P(Py-In) copolymers. The morphology of polymers and copolymers was studied and compared using SEM. The SEM micrographs showed similarities between homo- and copolymers. A mechanism was suggested for the formation of copolymers proceeding via radical cations of indole, pyrrole and that of the possibly formed copolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Nalwa HS (1997) Handbook of organic conductive molecules and polymers, vols 2 and 3. John Wiley & Sons Ltd, England

    Google Scholar 

  2. Kumar D, Sharma RC (1998) Advances in conductive polymers. Eur Polym J 34:1053–1060

    Article  CAS  Google Scholar 

  3. Skotheim TA, Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers, vol 2. Marcel Dekker, New York

    Google Scholar 

  4. Li N, Shan D, Xue H (2007) Electrochemical synthesis and characterization of poly(pyrrole-co-tetrahydrofuran) conducting copolymer. Eur Polym J 43:2532–2539

    Article  CAS  Google Scholar 

  5. Li XG, Li A, Huang MR, Liao Y, Lu YG (2010) Efficient and scalable synthsis of pure polypyrrole nanoparticles applicable for advanced nanocomposites and carbon nanoparticles. J Phys Chem C 114:19244–19255

    Article  CAS  Google Scholar 

  6. Li XG, Wei F, Huang MR, Xie YB (2007) Facile synthesis and intrinsic conductivity of novel pyrrole copolymer nanoparticles with inherent self stability. J Phys Chem Pol Phys 111:5829–5836

    Article  CAS  Google Scholar 

  7. Talbi H, Monard G, Loos M, Billaud D (1999) Theoretical investigation of the monomer reactivity in polyindole derivatives. Synth Met 101:115–116

    Article  CAS  Google Scholar 

  8. Xu JK, Nie GM, Zhang SS, Han XJ, Hou J, Pu SZ (2005) Electrosyntheses of freestanding polyindole films in boron trifluoride diethyl etherate. J Polym Sci Pol Chem 43:1444–1453

    Article  CAS  Google Scholar 

  9. Billaud D, Maarouf EB, Hannecart E (1994) An investigation of electrochemically and chemically polymerized indole. Mater Res Bull 29:1239–1246

    Article  CAS  Google Scholar 

  10. Nie G, Han X, Hou J, Zhang S (2007) Low-potential electrochemical polymerization of 5-fluoroindole and characterization of its polymers. J Electroanal Chem 604:125–132

    Article  CAS  Google Scholar 

  11. Dhanalashmi K, Sarawathi R (2001) Electrochemical preparation and characterization of conducting copolymers: poly (pyrrole-co-indole). J Mater Sci 36:4107–4115

    Article  Google Scholar 

  12. Arjomandi J, Holze R (2013) A spectroelectrochemical study of conducting pyrrole-N-methylpyrrole copolymers in nonaqueous solution. J Solid State Electochem 17:1881–1889

    Article  CAS  Google Scholar 

  13. Tüken T, Yazıcı B, Erbil M (2005) Electrochemical synthesis of polyindole on nickel-coated mild steel and its corrosion performance. Surf Coat Tech 200:2301–2309

    Article  Google Scholar 

  14. Arjomandi J, Holze R (2008) Electrochemical preparation and in situ characterization of poly(3-methylpyrrole) and poly(3-methylpyrrole-cyclodextrin) films on gold electrodes. Cent Eur J Chem 6:199–207

    Article  CAS  Google Scholar 

  15. Ali Shah AH, Holze R (2006) Spectroelectrochemistry of aniline-o-aminophenol co-polymers. Electrochim Acta 52:1374–1382

    Article  CAS  Google Scholar 

  16. Arjomandi J, Shah AA, Bilal S, Hoang HV, Holze R (2011) In situ Raman and UV–Vis spectroscopic studies of polypyrrole and poly(pyrrole-2,6-dimethyl-β-cyclodextrin). Spectrochim Acta A 78:1–6

    Article  Google Scholar 

  17. Bilal S, Holze R (2007) In situ UV–Vis spectroelectrochemistry of poly (o-phenylenediamine-co-m-toluidine). Electrochim Acta 52:5346–5356

    Article  CAS  Google Scholar 

  18. Köleli F, Arslan Y, Düdükcü M (2002) Preparation and SEESR-spectroscopic investigations of indole/pyrrole copolymers in aprotic medium. Synth Met 129:47–52

    Article  Google Scholar 

  19. Pandey PC, Prakash R (1998) Characterization of Electropolymerized Polyindole. J Electrochem Soc 145:4103–4107

    Article  CAS  Google Scholar 

  20. Arjomandi J, Safdar S, Malmir M (2012) In situ uv-visible spectroelectrochemistry and cyclic voltammetry of conducting N-methylpyrrole: indole co-polymers on gold electrode. J Electrochem Soc 159:E73–E81

    Article  CAS  Google Scholar 

  21. Arjomandi J, Holze R (2007) In situ characterization of N-methylpyrrole and (N-methylpyrrole-cyclodextrin) polymers on gold electrodes in aqueous and nonaqueous solution. Synth Met 157:1021–1028

    Article  CAS  Google Scholar 

  22. Holze R, Lippe J (1990) A method for electrochemical in situ conductivity measurements of electrochemically synthesized intrinsically conducting polymers. Synth Met 38:99–105

    Article  CAS  Google Scholar 

  23. Bilal S, Holze R (2006) Electrochemical copolymerization of o-toluidine and o-phenylenediamine. J Electroanal Chem 592:1–13

    Article  CAS  Google Scholar 

  24. Asavapiriyanont S, Chandler GK, Gunawardena GA, Pletcher D (1984) The electrodeposition of polypyrrole films from aqueous solutions. J Electroanal Chem 177:229–244

    Article  CAS  Google Scholar 

  25. Asavapiriyanont S, Chandler GK, Gunawardena GA, Pletcher D (1984) The electrodeposition of poly-N-methylpyrrole films from aqueous solutions. J Electroanal Chem 177:245–251

    Article  CAS  Google Scholar 

  26. Yakushi K, Lauchlan LJ, Clarke TC, Street GB (1983) Optical study of polypyrrole perchlorate. J Chem Phys 79:4774–4778

    Article  CAS  Google Scholar 

  27. Chandresekhar P (1999) Conducting polymers, fundamentals and applications. Kluwer Academic Publishers, New York

    Book  Google Scholar 

  28. Tüken T, Yazıcı B, Erbil M (2006) The use of polyindole for prevention of copper corrosion. Surf Coat Tech 200:4802–4809

    Article  Google Scholar 

  29. Brédas JL, Thémans B, Fripiat JG, André JM, Chance RR (1984) Highly conducting polyparaphenylene, polypyrrole, and polythiophene chains: an ab initio study of the geometry and electronic-structure modifications upon doping. Phys Rev B 29:6761–6773

    Article  Google Scholar 

  30. Zotti G, Schiavon G (1989) Spectroclectrochemical determination of polarons in polypyrrole and polyaniline. Synth Met 30:151–158

    Article  CAS  Google Scholar 

  31. Unal HI, Sahan B, Erol O (2012) Investigation of electrokinetic and electrorheological properties of polyindole prepared in the presence of a surfactant. Mater Chem Phys 134:382–391

    Article  CAS  Google Scholar 

  32. Talbi H, Billaud D (1998) Electrochemical properties of polyindole and poly (5-cyanoindole) in LiClO4–acetonitrile and in HCl and HClO4 solutions. Synth Met 93:105–110

    Article  CAS  Google Scholar 

  33. Davidson RG, Turner TG (1998) An IR spectroscopic study of the electrochemical reduction of polypyrrole doped with dodecylsulfate anion. Synth Met 72:121–128

    Article  Google Scholar 

  34. Hamann CH, Holze R, Köleli F (1990) ESR spectroscopy in situ detection radical intermediates in the electropolymerization of nitrogenous. Dechem Monogr 121:297–319

    CAS  Google Scholar 

  35. Sadki S, Schottland P, Brodie N, Sabouraud G (2000) The mechanisms of pyrrole electropolymerization. Chem Soc Rev 29:283–293

    Article  Google Scholar 

  36. Li XG, Liu YW, Huang MR, Peng S, Gong LZ, Moloney MG (2010) Simple efficient synthesis of strongly luminescent polypyrene with intrinsic conductivity and high carbon yield by chemical oxidative polymerization of pyrene. Chemistry 16:4803–4813

    Article  CAS  Google Scholar 

  37. Choi KM, Kim CY, Kim KH (1992) Polymerization mechanism and physicochemical properties of electrochemically prepared polyindole tetrafluoroborate. J Phys Chem 96:3782–3788

    Article  CAS  Google Scholar 

  38. Yurtsever M, Yurtsever E (2002) A DFT study of polymerization mechanisms of indole. Polymer 43:6019–6025

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sponsorship of this work by Bu-Ali Sina University is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal Arjomandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjomandi, J., Malmir, M. & Holze, R. A comparative spectroelectrochemistry of homo- and copolymerization of pyrrole and N-methylpyrrole with indole on a gold electrode. Iran Polym J 25, 1–13 (2016). https://doi.org/10.1007/s13726-015-0397-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0397-1

Keywords

Navigation