Skip to main content
Log in

Confinement effect of graphene nanoplatelets on atom transfer radical polymerization of styrene: grafting through hydroxyl groups

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Dual characteristics polystyrene chains were synthesized by “grafting through” atom transfer radical polymerization in the presence of surface-modified graphene nanoplatelets. After oxidation of graphene, it was functionalized by different amounts of 3-(trimethoxysilyl) propyl methacrylate (MPS) through the surface hydroxyl groups. Polymerization of styrene in the presence of modified graphene and initiator, ethyl alpha-bromoisobutyrate, was accomplished at 110  C. Then, the effects of various graft densities and different graphene loadings on the heterogeneous graft and free polystyrene chains’ characteristics and also their kinetics of polymerization were studied by gas- and gel-permeation chromatographies. Linear increase of ln(M 0/M) with time for all the samples shows that polymerization proceeds in a living manner. By increasing graphene content, M n increases, and polydispersity index (PDI) decreases for free chains. However, a reverse behavior was observed for attached chains. Increasing graft density resulted in higher M n and lower PDI values for free chains. Similar to the effect of graphene content, a reverse behavior was observed for the attached chains. Efficiency of grafting reactions along with the graft contents was studied by X-ray photoelectron spectroscopy (XPS), elemental analysis, and thermogravimetry analysis. The grafting ratio of MPS modifier was calculated to be 9.7 % via the data of Si contents in the XPS survey scan data. Finally, the morphology of the functionalized graphene was studied by transmission electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roghani-Mamaqani H, Haddadi-Asl V, Salami-Kalajahi M (2012) In situ controlled radical polymerization: a review on synthesis of well-defined nanocomposites. Polym Rev 52:142–188

    Article  CAS  Google Scholar 

  2. Grubbs RB (2011) Nitroxide-mediated radical polymerization: limitations and versatility. Polym Rev 51:104–137

    Article  CAS  Google Scholar 

  3. Ayres N (2011) Atom transfer radical polymerization: a robust and versatile route for polymer synthesis. Polym Rev 51:138–162

    Article  CAS  Google Scholar 

  4. Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H (2012) Effect of silica nanoparticle loading and surface modification on the kinetics of RAFT polymerization. J Polym Eng 32:13–22

    Article  CAS  Google Scholar 

  5. Najafi M, Roghani-Mamaqani H, Salami-Kalajahi M, Haddadi-Asl V (2010) A comprehensive monte carlo simulation of the effects of chain-length-dependent and diffusion-controlled termination on styrene ATRP. Chin J Polym Sci 28:483–497

    Article  CAS  Google Scholar 

  6. Najafi M, Roghani-Mamaqani H, Salami-Kalajahi M, Haddadi-Asl V (2011) An exhaustive study of chain-length-dependent and diffusion-controlled free radical and atom-transfer radical polymerization of styrene. J Polym Res 18:1539–1555

    Article  CAS  Google Scholar 

  7. Roghani-Mamaqani H, Haddadi-Asl V, Ghaderi-Ghahfarrokhi M, Sobhkhiz Z (2014) Reverse atom transfer radical polymerization of methyl methacrylate in the presence of azo-functionalized carbon nanotubes: a grafting from approach. Colloid Polym Sci 292:2971–2981

    Article  CAS  Google Scholar 

  8. Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2014) Nanocrystalline cellulose grafted random copolymers of N-isopropylacrylamide and acrylic acid synthesized by RAFT polymerization: effect of different acrylic acid contents on LCST behavior. RSC Adv 14:31428–31442

    Article  Google Scholar 

  9. Khezri K, Haddadi-Asl V, Roghani-Mamaqani H (2014) Introduction of a double bond containing modifier on the surface of MCM-41 nanoparticles: application for SR&NI ATRP of styrene. NANO 9:1450023. doi:10.1142/S1793292014500234

    Article  Google Scholar 

  10. Ahmadian-Alam L, Haddadi-Asl V, Roghani-Mamaqani H, Hatami L, Salami-Kalajahi M (2012) Use of clay-anchored reactive modifier for the synthesis of poly (styrene-co-butyl acrylate)/clay nanocomposite via in situ AGET ATRP. J Polym Res 19:9773–9785

    Article  Google Scholar 

  11. Haddleton DM, Heming AM, Kukulj D, Duncalf DJ, Shooter AJ (1998) Atom transfer polymerization of methyl methacrylate. Effect of acids and effect with 2-bromo-2-methylpropionic acid initiation. Macromolecules 31:2016–2018

    Article  CAS  Google Scholar 

  12. Wang XS, Armes SP (2000) Facile atom transfer radical Polymerization of methoxy-capped oligo(ethylene glycol) methacrylate in aqueous media at ambient temperature. Macromolecules 33:6640–6647

    Article  CAS  Google Scholar 

  13. Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M (2010) Synthesis and characterization of clay dispersed polystyrene nanocomposite via atom transfer radical polymerization. Polym Compos 31:1829–1837

    Article  CAS  Google Scholar 

  14. Chern C-S, Lin J-J, Lin Y-L, Lai S-Z (2006) Kinetics of styrene emulsion polymerization in the presence of montmorillonite. Eur Polym J 42:1033–1042

    Article  CAS  Google Scholar 

  15. Behling RE, Williams BA, Staade BL, Wolf LM, Cochran EW (2009) Influence of graft density on kinetics of surface-initiated ATRP of polystyrene from montmorillonite. Macromolecules 42:1867–1872

    Article  CAS  Google Scholar 

  16. Blas H, Save M, Boissière C, Sanchez C, Charleux B (2011) Surface-initiated nitroxide-mediated polymerization from ordered mesoporous silica. Macromolecules 44:2577–2588

    Article  CAS  Google Scholar 

  17. Pasetto P, Blas H, Audouin F, Boissière C, Sanchez C, Save M, Charleux B (2009) Mechanistic insight into surface-initiated polymerization of methyl methacrylate and styrene via ATRP from ordered mesoporous silica particles. Macromolecules 42:5983–5995

    Article  CAS  Google Scholar 

  18. Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19:7098–7105

    Article  CAS  Google Scholar 

  19. Fang M, Wang K, Lu H, Yang Y, Nutt S (2010) Single-layer graphene nanosheets with controlled grafting of polymer chains. J Mater Chem 20:1982–1992

    Article  CAS  Google Scholar 

  20. Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M (2011) Preparation of tailor-made polystyrene nanocomposite with mixed clay-anchored and free chains via ATRP. AIChE J 57:1873–1881

    Article  CAS  Google Scholar 

  21. Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M (2012) Evaluation of the confinement effect of nanoclay on the kinetics of styrene atom transfer radical polymerization. J Appl Polym Sci 123:409–417

    Article  CAS  Google Scholar 

  22. Salem N, Shipp DA (2005) Polymer-layered silicate nanocomposites prepared through in situ reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer 46:8573–8581

    Article  CAS  Google Scholar 

  23. Tan Y, Fang L, Xiao J, Song Y, Zheng Q (2013) Grafting of copolymers onto graphene by miniemulsion polymerization for conductive polymer composites: improved electrical conductivity and compatibility induced by interfacial distribution of graphene. Polym Chem 4:2939–2944

    Article  CAS  Google Scholar 

  24. Roghani-Mamaqani H, Haddadi-Asl V (2014) In-plane functionalizing graphene nanolayers with polystyrene by atom transfer radical polymerization: grafting from hydroxyl groups. Polym Compos 35:386–395

    Article  CAS  Google Scholar 

  25. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M (2014) Polystyrene grafted graphene nanoplatelets with various graft densities by atom transfer radical polymerization from the edge carboxyl groups. RSC Adv 4:24439–24452

    Article  CAS  Google Scholar 

  26. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Zeinali E, Salami-Kalajahi M (2014) In situ atom transfer radical polymerization of styrene to in-plane functionalize graphene nanolayers: grafting through hydroxyl groups. J Polym Res 21:333–344

    Article  Google Scholar 

  27. Rahimi-Razin S, Haddadi-Asl V, Salami-Kalajahi M, Behboodi-Sadabad F, Roghani-Mamaqani H (2012) Matrix-grafted multiwalled carbon nanotubes/poly(methyl methacrylate) nanocomposites synthesized by in situ RAFT polymerization: a kinetics study. Int J Chem Kinet 44:555–569

    Article  CAS  Google Scholar 

  28. Roghani-Mamaqani H, Haddadi-Asl V, Khezri K, Salami-Kalajahi M (2014) Edge-functionalized graphene nanolayers with polystyrene by atom transfer radical polymerization: grafting through carboxyl groups. Polym Int 63:1912–1923

    Article  CAS  Google Scholar 

  29. Liao S-H, Liu P-L, Hsiao M-C, Teng C-C, Wang C-A, Ger M-D, Chiang C-L (2012) One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite. Ind Eng Chem Res 51:4573–4581

    Article  CAS  Google Scholar 

  30. Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638

    Article  CAS  Google Scholar 

  31. Chen Y, Wang C, Chen J, Liu X, Tong Z (2009) Growth of lightly crosslinked PHEMA brushes and capsule formation using pickering emulsion interface-initiated ATRP. J Polym Sci A Polym Chem 47:1354–1367

    Article  CAS  Google Scholar 

  32. Lee SH, Dreyer DR, An J, Velamakanni A, Piner RD, Park S, Zhu Y, Kim SO, Bielawski CW, Ruoff RS (2010) Polymer brushes via controlled, surface-initiated atom transfer radical polymerization (ATRP) from graphene oxide. Macromol Rapid Commun 31:281–288

    Article  CAS  Google Scholar 

  33. Lee DC, Jang LW (1996) Preparation and characterization of PMMA—clay hybrid composite by emulsion polymerization. J Appl Polym Sci 61:1117–1122

    Article  CAS  Google Scholar 

  34. Roghani-Mamaqani H, Haddadi-Asl V, Najafi M, Salami-Kalajahi M (2011) Preparation of nanoclay-dispersed polystyrene nanofibers via atom transfer radical polymerization and Electrospinning. J Appl Polym Sci 120:1431–1438

    Article  CAS  Google Scholar 

  35. Datta H, Singha NK, Bhowmick AK (2008) Structure and properties of tailor-made poly(ethylacrylate)/clay nanocomposites prepared by in situ atom transfer radical polymerization. J Appl Polym Sci 108:2398–2407

    Article  CAS  Google Scholar 

  36. Gaynor S, Greszta D, Mardare D, Teodorescu M, Matyjaszewski K (1994) Controlled radical polymerization. J Macromol Sci Pure Appl Chem A 31:1561–1578

    Article  Google Scholar 

  37. Jung I, Dikin D, Park S, Cai W, Mielke SL, Ruoff RS (2008) Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. J Phys Chem C 112:20264–20268

    Article  CAS  Google Scholar 

  38. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  39. Shen J, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21:3514–3520

    Article  CAS  Google Scholar 

  40. Hua D, Tang J, Jiang J, Gu Z, Dai L, Zhu X (2009) Controlled grafting modification of silica gel via RAFT polymerization under ultrasonic irradiation. Mater Chem Phys 114:402–406

    Article  CAS  Google Scholar 

  41. Liu C-H, Pan C-Y (2007) Grafting polystyrene onto silica nanoparticles via RAFT polymerization. Polymer 48:3679–3685

    Article  CAS  Google Scholar 

  42. Ngo VG, Bressy C, Leroux C, Margaillan A (2009) Synthesis of hybrid TiO2 nanoparticles with well-defined poly(methyl methacrylate) and poly(tert-butyldimethylsilyl methacrylate) via the RAFT process. Polymer 50:3095–3102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Roghani-Mamaqani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roghani-Mamaqani, H., Haddadi-Asl, V., Khezri, K. et al. Confinement effect of graphene nanoplatelets on atom transfer radical polymerization of styrene: grafting through hydroxyl groups. Iran Polym J 24, 51–62 (2015). https://doi.org/10.1007/s13726-014-0299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-014-0299-7

Keywords

Navigation