Skip to main content
Log in

Fabrication and characterization of mineralized P(LLA-CL)/SF three-dimensional nanoyarn scaffolds

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Particular attention has been given to three-dimensional scaffolds for bone tissue regeneration. In this study, poly(l-lactic acid-co-ε-caprolactone) (P(LLA-CL) nanoyarn scaffold and poly(l-lactic acid-co-caprolactone)/silk fibroin (P(LLA-CL)/SF) nanoyarn scaffold were fabricated by a dynamic liquid support electrospinning system; and then the three-dimensional (3D) nanoyarn scaffolds were prepared by freeze-drying processes. The results indicated the average diameter of P(LLA-CL) and P(LLA-CL)/SF nanoyarns were 29.44 ± 3.47 μm and 11.59 ± 0.46 μm, respectively. The yarn in the nanoyarn scaffold was twisted by many nanofibers as evidenced by scanning electron microscope (SEM) result. These nanoyarn scaffolds were biomineralized by alternatively immersing the nanoyarn scaffolds into phosphoric acid and calcium ion solutions. After biomineralization, the existence of hydroxyapatite (HA) particles on the scaffolds was confirmed using fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. In vitro study of cell proliferation was found to be higher on P(LLA-CL)/SF scaffold as compared to P(LLA-CL) scaffold after culturing for 14 days. H&E staining results showed that cells not only attached to the surface of 3D scaffold but also infiltrated into the scaffold. This study indicated that the electrospun P(LLA-CL)/SF scaffold with nanostructure morphology could improve cell adhesion and proliferation and electrospun P(LLA-CL)/SF scaffold with biomineralization has a potential application for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Helsen JA, Jürgen Breme H (1998) Metals as biomaterials. Wiley, New York

    Google Scholar 

  2. Teo W, Liao S, Chan C, Ramakrishna S (2011) Fabrication and characterization of hierarchically organized nanoparticle-reinforced nanofibrous composite scaffolds. Acta Biomater 7:193–202

    Article  CAS  Google Scholar 

  3. Burg KJL, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21:2347–2359

    Article  CAS  Google Scholar 

  4. Rose FRAJ, Oreffo ROC (2002) Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun 292:1–7

    Article  CAS  Google Scholar 

  5. Thorvaldsson A, Stenhamre H, Gatenholm P, Walkenström P (2008) Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules 9:1044–1049

    Article  CAS  Google Scholar 

  6. Tzezana R, Zussman E, Levenberg S (2008) A layered ultra-porous scaffold for tissue engineering, created via a hydrospinning method. Tissue Eng Part C 14:281–288

    Article  CAS  Google Scholar 

  7. Wu J, Liu S, He L, Wang H, He C, Fan C, Mo X (2012) Electrospun nanoyarn scaffold and its application in tissue engineering. Mater Lett 89:146–149

    Article  CAS  Google Scholar 

  8. Sabir MI, Xu X, Li L (2009) A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 44:5713–5724

    Article  CAS  Google Scholar 

  9. Kim SI, Lim JI, Jung Y, Mun CH, Kim JH, Kim SH (2013) Preparation of enhanced hydrophobic poly(l-lactide-co-ε-caprolactone) films surface and its blood compatibility. Appl Surf Sci 276:586–591

    Article  CAS  Google Scholar 

  10. Xu Y, Wu J, Wang H, Li H, Di N, Song L, Li S, Li D, Xiang Y, Liu W, Mo X, Zhou Q (2013) Fabrication of electrospun poly(l-lactide-co-ε-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering. Tissue Eng Part C 19:925–936

    Article  CAS  Google Scholar 

  11. Vaquette C, Kahn C, Frochot C, Nouvel C, Six JL, De Isla N, Luo LH, Cooper-White J, Rahouadj R, Wang X (2010) Aligned poly (l-lactic-co-ε-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering. J Biomed Mater Res A 94:1270–1282

    Google Scholar 

  12. Fang Z, Fu W, Dong Z, Zhang X, Gao B, Guo D, He H, Wang Y (2011) Preparation and biocompatibility of electrospun poly (l-lactide-co-ε-caprolactone)/fibrinogen blended nanofibrous scaffolds. Appl Surf Sci 257:4133–4138

    Article  CAS  Google Scholar 

  13. Zheng L, Lu HQ, Fan HS, Zhang XD (2013) Reinforcement and chemical cross-linking in collagen-based scaffolds in cartilage tissue engineering: a comparative study. Iran Polym J 22:833–842

    Article  CAS  Google Scholar 

  14. Fan H, Liu H, Toh SL, Goh JCH (2009) Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials 30:4967–4977

    Article  CAS  Google Scholar 

  15. Liu H, Fan H, Wang Y, Toh SL, Goh JCH (2008) The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering. Biomaterials 29:662–674

    Article  CAS  Google Scholar 

  16. Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26:147–155

    Article  CAS  Google Scholar 

  17. Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH (2005) In vitro degradation of silk fibroin. Biomaterials 26:3385–3393

    Article  CAS  Google Scholar 

  18. Zhang K, Wang H, Huang C, Su Y, Mo X, Ikada Y (2010) Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering. J Biomed Mater Res A 93:984–993

    Google Scholar 

  19. Muthumanickkam A, Subramanian S, Goweri M, Beaula WS, Ganesh V (2013) Comparative study on eri silk and mulberry silk fibroin scaffolds for biomedical applications. Iran Polym J 22:143–154

    Article  CAS  Google Scholar 

  20. Kuo CK, Marturano JE, Tuan RS (2010) Novel strategies in tendon and ligament tissue engineering: advanced biomaterials and regeneration motifs. Sports Med Arthrosc Rehabil Ther Thecnol 2:20

    Article  Google Scholar 

  21. Liu H, Fan H, Toh SL, Goh JC (2008) A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Biomaterials 29:1443–1453

    Article  CAS  Google Scholar 

  22. Olszta MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufman MJ, Douglas EP, Gower LB (2007) Bone structure and formation: a new perspective. Mat Sci Eng R 58:77–116

    Article  Google Scholar 

  23. Rizzi SC, Heath D, Coombes A, Bock N, Textor M, Downes S (2001) Biodegradable polymer/hydroxyapatite composites: surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res 55:475–486

    Article  CAS  Google Scholar 

  24. Bradt JH, Mertig M, Teresiak A, Pompe W (1999) Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem Mater 11:2694–2701

    Article  CAS  Google Scholar 

  25. Xu AW, Ma Y, Cölfen H (2007) Biomimetic mineralization. J Mater Chem 17:415–449

    Article  CAS  Google Scholar 

  26. Calvert P, Rieke P (1996) Biomimetic mineralization in and on polymers. Chem Mater 8:1715–1727

    Article  CAS  Google Scholar 

  27. Nazarov R, Jin HJ, Kaplan DL (2004) Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5:718–726

    Article  CAS  Google Scholar 

  28. Teo WE, Gopal R, Ramaseshan R, Fujihara K, Ramakrishna S (2007) A dynamic liquid support system for continuous electrospun yarn fabrication. Polymer 48:3400–3405

    Article  CAS  Google Scholar 

  29. Yin A, Zhang K, McClure MJ, Huang C, Wu J, Fang J, Mo X, Bowlin GL, Al-Deyab SS, El-Newehy M (2013) Electrospinning collagen/chitosan/poly (l-lactic acid-co-ε-caprolactone) to form a vascular graft: mechanical and biological characterization. J Biomed Mater Res A 101:1292–1301

    Article  Google Scholar 

  30. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007

    Article  CAS  Google Scholar 

  31. Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL (2006) Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27:6064–6082

    Article  CAS  Google Scholar 

  32. Tanahashi M, Matsuda T (1997) Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. J Biomed Mater Res 34:305–315

    Article  CAS  Google Scholar 

  33. Sato K, Kumagai Y, Tanaka J (2000) Apatite formation on organic monolayers in simulated body environment. J Biomed Mater Res 50:16–20

    Article  CAS  Google Scholar 

  34. Zhang K, Qian Y, Wang H, Fan L, Huang C, Yin A, Mo X (2010) Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application. J Biomed Mater Res A 95:870–881

    Article  Google Scholar 

  35. Chen X, Shao Z, Marinkovic NS, Miller LM, Zhou P, Chance MR (2001) Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophys Chem 89:25–34

    Article  CAS  Google Scholar 

  36. Zhou P, Li G, Shao Z, Pan X, Yu T (2001) Structure of Bombyx mori silk fibroin based on the DFT chemical shift calculation. J Phys Chem B 105:12469–12476

    Article  CAS  Google Scholar 

  37. Min BM, Jeong L, Lee KY, Park WH (2006) Regenerated silk fibroin nanofibers: water vapor-induced structural changes and their effects on the behavior of normal human cells. Macromol Biosci 6:285–292

    Article  CAS  Google Scholar 

  38. Takeuchi A, Ohtsuki C, Miyazaki T, Tanaka H, Yamazaki M, Tanihara M (2003) Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. J Biomed Mater Res A 65:283–289

    Article  Google Scholar 

  39. Kawashita M, Nakao M, Minoda M, Kim HM, Beppu T, Miyamoto T, Kokubo T, Nakamura T (2003) Apatite-forming ability of carboxyl group-containing polymer gels in a simulated body fluid. Biomaterials 24:2477–2484

    Article  CAS  Google Scholar 

  40. Mavis B, Demirtaş TT, Gümüşderelioğlu M, Gündüz G, Çolak Ü (2009) Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate. Acta Biomater 5:3098–3111

    Article  CAS  Google Scholar 

  41. Ngiam M, Liao S, Patil AJ, Cheng Z, Chan CK, Ramakrishna S (2009) The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone 45:4–16

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Open Funding Project of the State Key Laboratory of Bioreactor Engineering, Science and Technology Commission of Shanghai Municipality Program (11nm0506200), National Nature Science Foundation of China (Project No. 31470941, 31271035), Deanship of Scientific Research at King Saud University research group project no. RGP-201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiumei Mo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Li, J., Liu, W. et al. Fabrication and characterization of mineralized P(LLA-CL)/SF three-dimensional nanoyarn scaffolds. Iran Polym J 24, 29–40 (2015). https://doi.org/10.1007/s13726-014-0297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-014-0297-9

Keywords

Navigation