Skip to main content

Advertisement

Log in

Processing and properties of new heteroaromatic Schiff-base poly(sulfone-ester)s and their blends

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

A new interesting class of linear Schiff-base poly(sulfone-ester)s has been synthesized by polycondensation of (E)-1-(4,4′-(4-hydroxy-3-chlorobenzylidene)thiocarbamoylaminophenyl-sulfonylphenyl)-3-(4-hydroxy-3-chlorobenzylidene)thiourea with 2,6-pyridinedicarbonyl chloride/thiophene-2,5-dicarbonyl dichloride. The enhancement of physical properties (thermal stability, glass transition temperature, mechanical strength, molar mass, electrical conductivity, etc.) of polymeric materials while maintaining their processability was the foremost aspiration of this research work. The pyridine or thiophene-based heteroaromatic poly(sulfone-ester)s (PSEs) showed ample solubility in amide solvents and good yield. PSEs possessed high inherent viscosity of 1.79–1.93 dL/g and molar mass 125 × 103–145 × 103 g mol−1. The polymers were thermally stable with 10 % weight loss in the range 538–547 °C and glass transition temperature between 293 and 296 °C. Further aim was to obtain novel miscible nano-blends exhibiting good electrical conductivity and heat stability. For this purpose, PAN doped with dodecylbenzenesulfonic acid (PAN/DBSA) was prepared by in situ doping polymerization, and then blended in solution/melt with PSEs. The resulting high performance materials potentially combined the fine thermal properties and processability of poly(sulfone-ester)s with electrical characteristics of polyaniline. FESEM of melt-blended PSEs/PAN/DBSA showed nano-level homogeneity of the microstructure liable for better electrical conductivity (2.7–3.2 S cm−1). The azomethine and pyridine moieties introduced in the backbone render these polymers thermally and mechanically stable as well as electrically conducting. The miscible blends, exhibited good heat stability (T 10 520–527 °C, T g 281–285 °C) and mechanical strength (55.20–57.18 MPa) compared with reported azomethine/polyaniline-based structures. New processable and high-performance engineering plastics, attractive for aerospace applications, can be fabricated using novel blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Uddin R, Hodge P, Chisholm MS, Eustace P (1996) Synthesis of polyesters containing 9,10-diacetoxyanthracene-2,6-diyl moieties via a precursor polymer approach. J Mater Chem 6:527–532

    Article  CAS  Google Scholar 

  2. Shenoy MA, Pereira EA, Parikh PF (2005) Aromatic polyester based on bisphenol-A for liquid insulating systems: a synthetic approach. J Appl Polym Sci 95:606–614

    Article  CAS  Google Scholar 

  3. Vert M, Li MS, Spenlehauer G, Guerin P (1992) Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3:432–446

    Article  CAS  Google Scholar 

  4. Tamami B, Yeganeh H, Kohmareh G-A (2004) Synthesis and characterization of novel polyesters derived from 4-aryl-2,6-bis(4-chlorocarbonyl phenyl) pyridines and various aromatic diols. Eur Polym J 40:1651–1657

    Article  CAS  Google Scholar 

  5. Akiba C, Watanabe K, Nagai K, Hirata Y, Nguyen Q-T (2006) Preparation and solubility of water–methanol mixtures in sulfonated poly(etherketone) containing a cardo-ring structure. J Appl Polym Sci 100:1113–1123

    Article  CAS  Google Scholar 

  6. Gong C, Guan R, Shu Y-C, Chuang F-S, Tsen W-C (2007) Effect of sulfonic group on solubility parameters and solubility behavior of poly(2,6-dimethyl-1,4-phenylene oxide). Polym Adv Technol 18:44–49

    Article  CAS  Google Scholar 

  7. Mallakpour S, Kolahdoozan M (2007) Synthesis and properties of thermally stable and optically active novel wholly aromatic polyesters containing a chiral pendent group. Eur Polym J 43:3344–3354

    Article  CAS  Google Scholar 

  8. Kido J, Lizumi Y (1998) Fabrication of highly efficient organic electroluminiscent devices. Appl Phys Lett 73:2721–2723

    Article  CAS  Google Scholar 

  9. MacDiarmid AG (2001) Synthetic metals: a novel role for organic polymers (Nobel Lecture). Angew Chem Int Ed 40:2581–2590

    Article  CAS  Google Scholar 

  10. Mallakpour S, Rafiee Z (2008) Safe and fast polyamidation of 5-[4-(2-phthalimidiylpropanoylamino)benzoylamino]isophthalic acid with aromatic diamines in ionic liquid under microwave irradiation. Polymer 49:3007–3013

    Article  CAS  Google Scholar 

  11. Kimura K, Zhuang J-H, Shirabe K, Yamashita Y (2003) Preparation of needle-like poly(azomethine) crystals by means of reaction-induced crystallization of oligomers. Polymer 44:4761–4764

    Article  CAS  Google Scholar 

  12. Yang CJ, Jenekhe SA (1991) Conjugated aromatic poly(azomethines). 1. Characterization of structure, electronic spectra, and processing of thin films from soluble complexes. Chem Mater 3:878–887

    Article  CAS  Google Scholar 

  13. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19:1924–1945

    Article  CAS  Google Scholar 

  14. Stutzmann N, Friend RH, Sirringhaus H (2003) Self-aligned, vertical-channel, polymer field- effect transistors. Science 299:1881–1884

    Article  CAS  Google Scholar 

  15. He F, Tian L, Xie W, Li M, Gao Q, Hanif M, Zhang Y, Cheng G, Yang B, Ma Y, Liu S, Shen J (2008) Highly efficient blue organic light-emitting devices based on improved guest/host combination. J Phys Chem C 112:12024–12029

    Article  CAS  Google Scholar 

  16. Grigoras M, Catanescu CO (2004) Imine oligomers and polymers. J Macromol Sci Part C Polym Rev C 44:1–37

    Article  Google Scholar 

  17. Arnand J, Palaniappan S, Sathyanarayana DN (1998) Conducting polyaniline blends and composites. Prog Polym Sci 23:993–1018

    Article  Google Scholar 

  18. De Paoli M-A (1997) In: Nalwa HS (ed) Handbook of organic conductive molecules and polymers, Vol. 2, Chapter 18, Wiley, New York

  19. Mitzakoff S, De Paoli MA (1999) Blends of polyaniline and engineering plastics. Eur Polym J 35:1791–1798

    Article  CAS  Google Scholar 

  20. Cao Y, Smith P, Hegger AJ (1992) Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymer. Synth Met 48:91–97

    Article  CAS  Google Scholar 

  21. Cao Y, Smith P (1993) Liquid-crystalline solutions of electrically conducting polyaniline. Polymer 34:3139–3143

    Article  CAS  Google Scholar 

  22. Zilberman M, Titelman GI, Siegmann A, Haba Y, Narkis M, Alperstein D (1997) Conductive blends of thermally dodecylbenzene sulfonic acid-doped polyaniline with thermoplastic polymers. J Appl Polym Sci 66:243–253

    Article  CAS  Google Scholar 

  23. Shacklette LW, Han CC, Luly MH (1993) Polyaniline blends in thermoplastics. Synth Met 57:3532–3537

    Article  CAS  Google Scholar 

  24. Olabisi O (1997) Handbook of thermoplastics. Marcel and Dekker, New York

    Google Scholar 

  25. Jouanneau J, Mercier R, Gonon L, Gebel G (2007) Synthesis of sulfonated polybenzimidazoles from functionalized monomers: preparation of ionic conducting membranes. Macromolecules 40:983–990

    Article  CAS  Google Scholar 

  26. Kausar A, Zulfiqar S, Ali L, Ishaq M, Sarwar MI (2011) Novel poly(thiourea-ether-imide)s derived from 4,4′-oxydiphenyl-bis(thiourea): probing the possibility for high-temperature applications. Polym Int 60:564–570

    Article  CAS  Google Scholar 

  27. Vasanthi BJ, Ravikumar L (2007) Number-average molecular weight of radiation-degraded poly(tetrafluoroethylene). An end group analysis based on solid-state NMR and IR spectroscopy. Eur Polym J 43:4325–4330

    Article  CAS  Google Scholar 

  28. Petreus O, Vlad-Bubulac T, Hamciuc C (2008) New polyesterimides containing bulky, cyclic phosphorus groups. High Perform Polym 20:588–600

    Article  CAS  Google Scholar 

  29. Osterholm JE, Cao Y, Klavetter F, Smith P (1994) Emulsion polymerization of aniline. Polymer 35:2902–2906

    Article  CAS  Google Scholar 

  30. Barra GMO, Leyva ME, Gorelova MM, Soares BG, Sens M (2001) X-Ray photoelectron spectroscopy and electrical conductivity of polyaniline doped with dodecylbenzenesulfonic acid as a function of the synthetic method. J Appl Polym Sci 80:556–565

    Article  Google Scholar 

  31. Zilberman M, Titelman GI, Siegmann A, Haba Y, Narkis M, Alperstein D (1997) Conductive blends of thermally dodecylbenzene sulfonic acid-doped polyaniline with thermoplastic polymers. J Appl Polym Sci 66:243–253

    Article  CAS  Google Scholar 

  32. Ubale VP, Patil AS, Maldar NN (2007) Polyhydrazides based on 2,5-bis(4-carboxymethylene phenyl)-3,4-diphenyl thiophene. Eur Polym J 43:1038–1045

    Article  CAS  Google Scholar 

  33. Vlase T, Vlase G, Doca N, Ilia G (2010) Thermo-oxidative degradation of polymers containing phosphorus in the main chain. High Perform Polym 22:863–875

    Article  CAS  Google Scholar 

  34. Thaker BT, Chothani NJ, Dhimmar YT, Patel BS, Solanki DB, Patel NB, Kanojiya JB, Tandel RS (2010) Synthesis, characterization and liquid crystalline properties of some Schiff base-ester central linkage involving 2,6-disubstituted naphthalene ring system. Liq Cryst 39:551–569

    Article  Google Scholar 

  35. Cristovan FH, Lemos SG, Pereira EC (2010) Systematic evaluation of the preparation of conducting PANI/ABS blends. J Appl Polym Sci 116:825–831

    CAS  Google Scholar 

Download references

Acknowledgments

For financial support in the research work, A. Kausar expresses thanks to Higher Education Commission of Pakistan (HEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Kausar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kausar, A., Hussain, S.T. Processing and properties of new heteroaromatic Schiff-base poly(sulfone-ester)s and their blends. Iran Polym J 22, 175–185 (2013). https://doi.org/10.1007/s13726-012-0116-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-012-0116-0

Keywords

Navigation