Skip to main content
Log in

Comparative study on eri silk and mulberry silk fibroin scaffolds for biomedical applications

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Mulberry silk fibroin is being used as biomaterial for tissue engineering applications. In the present work, comparisons are made between mulberry and eri silk fibroin scaffolds prepared by electrospinning method. The scaffolds are treated with ethanol to improve their dimensional stability, and the physical and chemical properties of the scaffolds are assessed using thermogravimetric analyzer (TGA), differential scanning calorimetry, Fourier transform infrared spectroscopy and X-ray diffractometry. The FTIR spectra confirm the structural change of silk fibroin from α-helical to β-sheet structure when mulberry and eri silk scaffolds are treated with ethanol. The thermal stability of the eri silk scaffold is found to be better than that of mulberry silk. Ethanol-treated eri silk displays higher tensile stress than the ethanol-treated mulberry silk. The hemolysis percentages of eri silk and mulberry silk scaffolds are found to be 1 and 3 %, respectively. While the platelet adhesion on eri silk fibroin scaffold is found to be lower than that of mulberry silk fibroin scaffold, the cell attachment, binding and spreading of L6 fibroblast cells on the eri silk scaffold are better than those on the mulberry silk fibroin, and the cell viability is found to be better on eri silk fibroin scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wang Y, Kim HJ, Novakovic GV, Kaplan DL (2006) Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27:6064–6082

    Article  CAS  Google Scholar 

  2. Tanaka K, Kajiyama N, Ishikura K, Waga S, Kikuchi A, Ohtomo K, Takagi T, Mizuno S (1999) Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochim Biophys Acta 1432:92–103

    Article  CAS  Google Scholar 

  3. He SJ, Valluzzi R, Gido SP (1999) Silk I structure in Bombyx mori silk foams. Int J Biol Macromol 24:187–195

    Article  CAS  Google Scholar 

  4. Huemmerich D, Slotta U, Scheibel T (2006) Processing and modification of films made from recombinant spider silk proteins. Appl Phys A 82:219–222

    Article  CAS  Google Scholar 

  5. Ishida M, Asakura T, Yokoi M, Saiti H (1990) Solvent and mechanical treatment induced conformational transition of silk fibroins studies by high-resolution solid-state carbon-13C NMR spectroscopy. Macromolecules 23:88–94

    Article  CAS  Google Scholar 

  6. Mai-ngam K, Boonkitpattarakul K, Jaipaew J, Mai-ngam B (2011) Evaluation of the properties of silk fibroin films from the non-mulberry silkworm Samia cynthia ricini for biomaterial design. J Biomater Sci Polym Ed 22:2001–2022

    Article  CAS  Google Scholar 

  7. Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL (2005) Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26:2775–2785

    Article  CAS  Google Scholar 

  8. Kardestuncer T, McCarthy MB, Karageorgiou V, Kaplan DL, Gronowicz G (2006) RGD-tethered silk substrate stimulates the differentiation of human tendon cells. Clin Orthop Relat Res 448:234–239

    Article  CAS  Google Scholar 

  9. Chen J, Altman GH, Karageorgiou V, Horan R, Collette A, Volloch V, Colabro T, Kaplan DL (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 67:559–570

    Article  Google Scholar 

  10. Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2003) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26:147–155

    Article  Google Scholar 

  11. Santin M, Motta A, Freddi G, Cannas M (1999) In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 46:382–389

    Article  CAS  Google Scholar 

  12. Nakazawa Y, Bamba M, Nishio S, Asakura T (2003) Tightly winding structure of sequential model peptide for repeated helical region in Samia cynthia ricini silk fibroin studied with solid-state NMR. Protein Sci 12:666–671

    Article  CAS  Google Scholar 

  13. Sen K, Murugesh Babu K (2004) Studies on Indian silk. I. Macrocharacterization and analysis of amino acid composition. J Appl Polym Sci 92:1080–1097

    Article  CAS  Google Scholar 

  14. Muthumanickkam A, Elankavi E, Gayathri R, Kubera Sampathkumar S, Vijayakumar G, Muthukumar K, Subramanian S (2010) Tensile and in vitro degradation of study of electrospun fibrous mat produced from eri silk fibroin. Int J Mater Res 12:1548–1553

    Article  Google Scholar 

  15. Chen JP, Chen SH, Lai GJ (2012) Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Res Lett 7:1–11

    Article  CAS  Google Scholar 

  16. Simchuer W, Phromnut N, Intarasorn S, Srihanam P (2010) The properties of eri (Samia ricini) silk fibroin fibers: effect of different organic solvents. Int J Appl Chem 6:373–382

    Google Scholar 

  17. Freddi G, Tsukada M, Berett S (1999) Structure and physical properties of silk fibroin/polyacrylamide blend films. J Appl Polym Sci 71:1563–1571

    Article  CAS  Google Scholar 

  18. Freddi G, Pessina G, Tsukada M (1999) Swelling and dissolution of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide. Int J Biol Macromol 24:251–263

    Article  CAS  Google Scholar 

  19. Tsukada M, Obo M, Kato H, Freddi G, Zanetti F (1996) Structure and dyeability of Bombyx mori silk fibers with different filament sizes. J Appl Polym Sci 60:1619–1627

    Article  CAS  Google Scholar 

  20. Rajkhowa R, Wang L, Kanwar JR, Wang X (2011) Molecular weight and secondary structure change in eri silk during alkali degumming and powdering. J Appl Polym Sci 119:1339–1347

    Article  CAS  Google Scholar 

  21. Cao H, Chen X, Huang L, Shao Z (2009) Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution. Mater Sci Eng, C 29:2270–2274

    Article  Google Scholar 

  22. He J, Guo N, Cui S (2011) Structure and mechanical properties of electrospun tussah silk fibroin nanofibres: variations in processing parameters. Iran Polym J 20:713–724

    CAS  Google Scholar 

  23. Min BM, Kuen LJ, Lee Y, Park WH (2006) Regenerated silk fibroin nanofibers: water vapor-induced structural changes and their effects on the behavior of normal human cells. Macromol Biosci 6:285–292

    Article  CAS  Google Scholar 

  24. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297

    Article  CAS  Google Scholar 

  25. Zobel HP, Stieneker F, Atmaca-Abdel Aziz S, Gilbert M, Werner D, Noe CR, Kreuter J, Zimmer A (1999) Evaluation of aminoalkylmethacrylate nanoparticles as colloidal drug carrier systems. Part II: characterization of antisense oligonucleotides loaded copolymer nanoparticles. Eur J Pharm Biopharm 48:1–12

    Article  CAS  Google Scholar 

  26. Hou C, Yuan Q, Huo D, Zheng S, Zhan D (2008) Investigation on clotting and hemolysis characteristics of heparin-immobilized polyether sulfones biomembrane. J Biomed Mater Res A 85:847–852

    Google Scholar 

  27. Yang YD, Yu JG, Zhou YG, Li PG (2005) Preparation and blood compatibility of oxidized-chitosan films. Chin Chem Letter 167:991–994

    Google Scholar 

  28. Qu XH, Wu Q, Chen GQ (2006) In vitro study on hemocompatibility and cytocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J Biomater Sci Polym Ed 17:1107–1121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundaramoorthy Subramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muthumanickkam, A., Subramanian, S., Goweri, M. et al. Comparative study on eri silk and mulberry silk fibroin scaffolds for biomedical applications. Iran Polym J 22, 143–154 (2013). https://doi.org/10.1007/s13726-012-0113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-012-0113-3

Keywords

Navigation