Skip to main content

Advertisement

Log in

In silico epigenetic profiling of hypermethylated genes in non-small cell lung cancer

  • Original Article
  • Published:
Network Modeling Analysis in Health Informatics and Bioinformatics Aims and scope Submit manuscript

Abstract

Non-small cell lung cancer today has several reported testimonies of aberrant promoter hypermethylation of tumor suppressing genes. In this study, a group of five genes (CDKN2A, APC, MGMT, DAPK and RASSF1) have been evaluated, using epigenetic tools and techniques to investigate their frequency of hypermethylation, prediction of CpG islands and expected primers along with their phylogenetic relationships (to analyze these prospective biomarkers) and their possible substitutes to enhance their clinical potential as drug treatment targets. During the course of research, Adenomatosis Polyposis Coli Tumor Suppressor gene, an antagonist of the Wnt signaling pathway, was seen to show maximum methylation frequency of 48 % at 223, 243, 250, 255 and 262 bp and be closely related to DAPK2 gene using phylogenetic analysis, suggesting that both of these genes can act as possible novel targets for designing drugs for non-small cell lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alberg AJ, Ford JG, Samet JM (2007) Epidemiology of lung cancer: ACCP evidence based clinical practice guidelines (2nd edition). Chest 132:29S–55S

    Article  Google Scholar 

  • Brabender J, Henning U, Kathleen DD, Ralf M, Paul MS, Reginald VL, Kumari W, Christopher EL, JiMin P, Stephen JM, Peter VD (2001) Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival. Oncogene 20:3528–3532

    Article  Google Scholar 

  • Brambilla E, Travis WD, Colby TV (2001) The new World Health Organization classification of lung tumours. Eur Respir J 18:1059–1068

    Article  Google Scholar 

  • Greenman C, Stephens P, Smith R (2007) Patterns of somatic mutation in human cancer genomes. Nature 446:153–158

    Article  Google Scholar 

  • Grunau C, Eric R, Rosenthal E, Roizes G (2001) MethDB- a public database for DNA methylation data. Nucleic Acids Res 29(1):270–274

    Article  Google Scholar 

  • Hakem R (2008) DNA-damage repair; the good, the bad, and the ugly. J Embryol 27:589–605

    Google Scholar 

  • He XM, Chang SH, Zhang JJ, Zhao Q, Xiang HZ, Wang J (2008) MethyCancer: the database of human DNA methylation and cancer. Nucleic Acids Res 36:D836–D841

    Article  Google Scholar 

  • Jemal A, Bray F, Center MM (2011) Global cancer statistics. Cancer J Clin 61:69–90

    Article  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  Google Scholar 

  • Kim DH, Nelson HH, Wiencke JK, Christiani DC, Wain JC, Mark EJ, Kelsey KT (2001) Promoter methylation of DAP-kinase: association with advanced stage in non-small cell lung cancer. Oncogene 20(14):1765–1770

    Article  Google Scholar 

  • Langer CJ, Besse B, Gualberto A (2010) The evolving role of histology in the management of advanced non-small-cell lung cancer. J Clin Oncol 28:5311–5320

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  Google Scholar 

  • Ongenaert M, Leander VN, Tim DM, Gerben M, Bekaert S, Wim VC (2008) PubMeth: a cancer methylation database combining text-mining and expert annotation. Nucleic Acids Res 36(1):836–841

    Google Scholar 

  • Osada H, Takahashi T (2002) Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer. Oncogene 21:7421–7434

    Article  Google Scholar 

  • Peto R, Darby S, Deo H (2000) Smoking, smoking cessation, and lung cancer in the UK since 1950: combination of national statistics with two case-control studies. Br Med J 321:323–329

    Article  Google Scholar 

  • Phillips T (2008) The role of methylation in gene expression. Nat Educ 1(1):116

    Google Scholar 

  • Purohit R, Kumar A (2013) Cancer associated E17K mutation causes rapid conformational drift in AKT1 pleckstrin homology (PH) domain. PLoS One 8(5):e64364

    Article  Google Scholar 

  • Purohit R, Sethumadhavan R (2009) Structural basis for the resilience of Darunavir (TMC114) resistance major flap mutations of HIV-1 protease. Interdiscip Sci 1(4):320–328

    Article  Google Scholar 

  • Purohit R, Rajendran V, Sethumadhavan R (2001) Relationship between mutation of serine residue at 315th position in M. tuberculosis catalase-peroxidase enzyme and Isoniazid susceptibility: an in silico analysis. J Mol Model 17(4):869–877

    Article  Google Scholar 

  • Purohit R, Rajendran V, Sethumadhavan R (2011) Studies on adaptability of binding residues and flap region of TMC-114 resistance HIV-1 protease mutants. J Biomol Struct Dyn 29(1):137–152

    Article  Google Scholar 

  • Rajendran V, Purohit R, Sethumadhavan R (2012) In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein. Amino Acids 43(2):603–615

    Article  Google Scholar 

  • Rekhtman N, Ang DC, Sima CS (2011) Immunohistochemical algorithm for differentiation of lung adenocarcinoma and squamous cell carcinoma based on large series of whole-tissue sections with validation in small specimens. Mod Pathol 24:1348–1359

    Article  Google Scholar 

  • Rosti G, Bevilacqua G, Bidoli P (2006) Small cell lung cancer. Ann Oncol 17(ii):5–10

    Google Scholar 

  • Russo VEA (1996) Epigenetic mechanisms of gene regulation. Genes Dev 11:1357–1492

    Google Scholar 

  • Safar AM, Horace S, Xiaobo S (2005) Methylation profiling of archived non-small cell lung cancer: a promising prognostic system. Clin Cancer Res 11:4400–4405

    Article  Google Scholar 

  • Shields PG (2002) Molecular epidemiology of smoking and lung cancer. Oncogene 21:6870–6876

    Article  Google Scholar 

  • Toyooka S, Tokumo M, Shigematsu H, Matsuo K, Asano H, Tomii K, Ichihara S, Suzuki M, Aoe M, Date H, Gazdar AF, Shimizu N (2006) Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers. Cancer Res 66(3):1371–1375

    Article  Google Scholar 

  • Travis WD, Brambilla E, Muller-Hermelink HK (2004) Pathology and genetics: tumors of the lung, pleura, thymus and heart. Int Agency Res Cancer 1:12–124

    Google Scholar 

  • Tsou JA, Shen LY, Siegmund KD, Long TI, Laird PW, Seneviratne CK, Koss MN, Pass HI, Hagen JA, Laird-Offringa IA (2005) Distinct DNA methylation profiles in malignant mesothelioma, lung adenocarcinoma, and non-tumor lung. Lung Cancer 47(2):193–204

    Article  Google Scholar 

  • Vallböhmer D, Brabender J, Yang D, Schneider PM, Metzger R, Danenberg KD, Hölscher AH, Danenberg PV (2006) DNA methyltransferases messenger RNA expression and aberrant methylation of CpG islands in non-small-cell lung cancer: association and prognostic value. Clin Lung Cancer 8(1):39–44

    Article  Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  Google Scholar 

  • Wang J, Lee JJ, Wang L, Liu DD, Lu C, Fan YH, Hong WK, Mao L (2004) Value of p16INK4A and RASSF1 promoter hypermethylation in prognosis of patients with resectable non-small cell lung cancer. Clin Cancer Res 10:6119–6125

    Article  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Budhayash Gautam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.N., Singh, S., Ramteke, P.W. et al. In silico epigenetic profiling of hypermethylated genes in non-small cell lung cancer. Netw Model Anal Health Inform Bioinforma 3, 71 (2014). https://doi.org/10.1007/s13721-014-0071-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13721-014-0071-0

Keywords

Navigation