Skip to main content
Log in

Androgens, body fat Distribution and Adipogenesis

  • Metabolism (R Pasquali, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Androgens are regulators of important adipocyte functions such as adipogenesis, lipid storage, and lipolysis. Through depot-specific impact on the cells of each fat compartment, androgens could modulate body fat distribution patterns in humans. Testosterone and dihydrotestosterone have been shown to inhibit the differentiation of preadipocytes to lipid-storing adipocytes in several models including primary cultures of human adipocytes from both men and women. Androgen effects have also been observed on some markers of lipid metabolism such as LPL activity, fatty acid uptake, and lipolysis. Possible depot-specific and sex-specific effects have been observed in some but not all models. Transformation of androgen precursors to active androgens or their inactivation by enzymes that are expressed and functional in adipose tissue may contribute to modulate the local availability of active hormones. These phenomena, along with putative depot-specific interactions with glucocorticoids may contribute to human body fat distribution patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Tran BX, Nair AV, Kuhle S, Ohinmaa A, Veugelers PJ. Cost analyses of obesity in Canada: scope, quality, and implications. Cost Eff Resour Allocation C/E. 2013;11:3.

    Google Scholar 

  2. Yang Z, Zhang N. The Burden of Overweight and Obesity on Long-term Care and Medicaid Financing. Med Care. 2014;52:658–63.

    PubMed  Google Scholar 

  3. Veilleux A, Tchernof A. Sex differrences in body fat distribution. In: Symonds ME, editor. Adipose Tissue Biology. 1st ed. Nottingham: Springer; 2012. p. 123–66.

    Google Scholar 

  4. Lemieux S, Prud'homme D, Bouchard C, Tremblay A, Després JP. Sex differences in the relation of visceral adipose tissue accumulation to total body fatness. Am J Clin Nutr. 1993;58:463–7.

    CAS  PubMed  Google Scholar 

  5. Wells JC. Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab. 2007;21:415–30.

    PubMed  Google Scholar 

  6. Siervogel RM, Demerath EW, Schubert C, Remsberg KE, Chumlea WC, Sun S, et al. Puberty and body composition. Horm Res. 2003;60:36–45.

    CAS  PubMed  Google Scholar 

  7. Van Loan MD. Total body composition: birth to old age. In: Roche AF, Heymsfield SB, Lohman TG, editors. Human body composition. Champaign: Human Kinetics; 1996. p. 205–15.

    Google Scholar 

  8. Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93:359–404.

    CAS  PubMed  Google Scholar 

  9. Tchernof A. Sex differences in energy balance, body composition and body fat distribution. In: Brown FM, Wyckoff J, Tsatsoulis A, editors. Diabetes in women. Heidelberg: Springer; 2009.

    Google Scholar 

  10. Smith JD, Borel AL, Nazare JA, Haffner SM, Balkau B, Ross R, et al. Visceral adipose tissue indicates the severity of cardiometabolic risk in patients with and without type 2 diabetes: results from the INSPIRE ME IAA study. JCEM. 2012;97:1517–25.

    CAS  PubMed  Google Scholar 

  11. Borel AL, Nazare JA, Smith J, Almeras N, Tremblay A, Bergeron J, et al. Visceral and not subcutaneous abdominal adiposity reduction drives the benefits of a 1-year lifestyle modification program. Obesity. 2012;20:1223–33.

    CAS  PubMed  Google Scholar 

  12. Després JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444:881–7.

    PubMed  Google Scholar 

  13. Bergman RN, Van Citters GW, Mittelman SD, Dea MK, Hamilton-Wessler M, Kim SP, et al. Central role of the adipocyte in the metabolic syndrome. J Investig Med. 2001;49:119–26.

    CAS  PubMed  Google Scholar 

  14. Mauriège P, Galitzky J, Berlan M, Lafontan M. Heterogeneous distribution of beta and alpha-2 adrenoceptor binding sites in human fat cells from various fat deposits: functional consequences. Eur J Clin Invest. 1987;17:156–65.

    PubMed  Google Scholar 

  15. Hellmér J, Marcus C, Sonnenfeld T, Arner P. Mechanisms for differences in lipolysis between human subcutaneous and omental fat cells. J Clin Endocrinol Metab. 1992;75:15–20.

    PubMed  Google Scholar 

  16. Arner P. Differences in lipolysis between human subcutaneous and omental adipose tissues. Ann Med. 1995;27:435–8.

    CAS  PubMed  Google Scholar 

  17. Tchernof A, Bélanger C, Morisset AS, Richard C, Mailloux J, Laberge P, et al. Regional differences in adipose tissue metabolism in women: Minor effect of obesity and body fat distribution. Diabetes. 2006;55:1353–60.

    CAS  PubMed  Google Scholar 

  18. Björntorp P. "Portal" adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis. 1990;10:493–6.

    PubMed  Google Scholar 

  19. Guo Z, Jensen MD. Intramuscular fatty acid metabolism evaluated with stable isotopic tracers. J Appl Physiol. 1998;84:1674–9.

    CAS  PubMed  Google Scholar 

  20. Basu A, Basu R, Shah P, Vella A, Rizza RA, Jensen MD. Systemic and regional free fatty acid metabolism in type 2 diabetes. Am J Physiol Endocrinol Metab. 2001;280:E1000–6.

    CAS  PubMed  Google Scholar 

  21. Jensen MD, Cardin S, Edgerton D, Cherrington A. Splanchnic free fatty acid kinetics. Am J Physiol Endocrinol Metab. 2003;284:E1140–8.

    CAS  PubMed  Google Scholar 

  22. Gray SL, Vidal-Puig AJ. Adipose tissue expandability in the maintenance of metabolic homeostasis. Nutr Rev. 2007;65:S7–12.

    PubMed  Google Scholar 

  23. Drolet R, Richard C, Sniderman AD, Mailloux J, Fortier M, Huot C, et al. Hypertrophy and hyperplasia of abdominal adipose tissues in women. Int J Obes. 2008;32:283–91.

    CAS  Google Scholar 

  24. Tchoukalova YD, Votruba SB, Tchkonia T, Giorgadze N, Kirkland JL, Jensen MD. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc Natl Acad Sci U S A. 2010;107:18226–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Carpentier AC, Labbé SM, Grenier-Larouche T, Noll C. Abnormal dietary fatty acid metabolic partitioning in insulin resistance and Type 2 diabetes. Clin Lipidol. 2013;6:703–16.

    Google Scholar 

  26. Trayhurn P, Wood IS. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans. 2005;33:1078–81.

    CAS  PubMed  Google Scholar 

  27. Wisse BE. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol. 2004;15:2792–800.

    CAS  PubMed  Google Scholar 

  28. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis. 2000;148:209–14.

    CAS  PubMed  Google Scholar 

  29. Hauner H. Secretory factors from human adipose tissue and their functional role. Proc Nutr Soc. 2005;64:163–9.

    CAS  PubMed  Google Scholar 

  30. Fischer-Posovszky P, Wabitsch M, Hochberg Z. Endocrinology of adipose tissue - an update. Horm Metab Res. 2007;39:314–21.

    CAS  PubMed  Google Scholar 

  31. Patsouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 2008;8:301–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72:219–46.

    CAS  PubMed  Google Scholar 

  33. Bain J. The many faces of testosterone. Clin Interv Aging. 2007;2:567–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Corona G, Monami M, Rastrelli G, Aversa A, Tishova Y, Saad F, et al. Testosterone and metabolic syndrome: a meta-analysis study. J Sex Med. 2011;8:272–83.

    CAS  PubMed  Google Scholar 

  35. Matsumoto T, Shiina H, Kawano H, Sato T, Kato S. Androgen receptor functions in male and female physiology. J Steroid Biochem Mol Biol. 2008;109:236–41.

    CAS  PubMed  Google Scholar 

  36. Auchus RJ. The backdoor pathway to dihydrotestosterone. Trends Endocrinol Metab. 2004;15:432–8.

    CAS  PubMed  Google Scholar 

  37. Veilleux A, Cote JA, Blouin K, Nadeau M, Pelletier M, Marceau P, et al. Glucocorticoid-induced androgen inactivation by aldo-keto reductase 1C2 promotes adipogenesis in human preadipocytes. Am J Physiol Endocrinol Metab. 2012;302:E941–9. This study describes the stimulatory effect of glucocorticoids on DHT inactivation in adipose tissue and demonstrates that 3α-HSD-3 (AKR1C2) is responsible for this phenomenon.

    CAS  PubMed  Google Scholar 

  38. Labrie F. DHEA, important source of sex steroids in men and even more in women. Prog Brain Res. 2010;182:97–148.

    CAS  PubMed  Google Scholar 

  39. Blouin K, Després JP, Couillard C, Tremblay A, Prud'homme D, Bouchard C, et al. Contribution of age and declining androgen levels to features of the metabolic syndrome in men. Metabolism. 2005;54:1034–40.

    CAS  PubMed  Google Scholar 

  40. Traish AM, Kang HP, Saad F, Guay AT. Dehydroepiandrosterone (DHEA)–a precursor steroid or an active hormone in human physiology. J Sex Med. 2011;8:2960–82.

    CAS  PubMed  Google Scholar 

  41. Tchernof A, Labrie F. Dehydroepiandrosterone, obesity and cardiovascular disease risk: a review of human studies. Eur J Endocrinol. 2004;151:1–14.

    CAS  PubMed  Google Scholar 

  42. Côté JA, Lessard J, Mailloux J, Laberge PY, Rhéaume C, Tchernof A. Circulating 5 α -dihydrotestosterone, abdominal obesity, and adipocyte characteristics in women. Horm Mol Biol Clin Invest. 2012;12:391–400.

    Google Scholar 

  43. Blouin K, Boivin A, Tchernof A. Androgens and body fat distribution. J Steroid Biochem Mol Biol. 2008;108:272–80.

    CAS  PubMed  Google Scholar 

  44. Pasquali R, Casimirri F, Cantobelli S, Melchionda N, Morselli Labate AM, Fabbri R, et al. Effect of obesity and body fat distribution on sex hormones and insulin in men. Metabolism. 1991;40:101–4.

    CAS  PubMed  Google Scholar 

  45. Gapstur SM, Gann PH, Kopp P, Colangelo L, Longcope C, Liu K. Serum androgen concentrations in young men: a longitudinal analysis of associations with age, obesity, and race. The CARDIA male hormone study. Cancer Epidemiol Biomarkers Prev. 2002;11:1041–7.

    CAS  PubMed  Google Scholar 

  46. Laaksonen DE, Niskanen L, Punnonen K, Nyyssonen K, Tuomainen TP, Valkonen VP, et al. Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care. 2004;27:1036–41.

    CAS  PubMed  Google Scholar 

  47. Kaufman JM, Vermeulen A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev. 2005;26:833–76.

    CAS  PubMed  Google Scholar 

  48. Seftel A. Male hypogonadism. Part II: etiology, pathophysiology, and diagnosis. Int J Impot Res. 2006;18:223–8.

    CAS  PubMed  Google Scholar 

  49. Boyanov MA, Boneva Z, Christov VG. Testosterone supplementation in men with type 2 diabetes, visceral obesity and partial androgen deficiency. Aging Male. 2003;6:1–7.

    CAS  PubMed  Google Scholar 

  50. Traish AM, Haider A, Doros G, Saad F. Long-term testosterone therapy in hypogonadal men ameliorates elements of the metabolic syndrome: an observational, long-term registry study. Int J Clin Pract. 2014;68:314–29. This study demonstrates that long-term testosterone therapy ameliorates features of the metabolic syndrome and can be clinically useful through such reduction of cardiometabolic risk in hypogonadal men.

    CAS  PubMed  Google Scholar 

  51. Haider A, Yassin A, Doros G, Saad F. Effects of long-term testosterone therapy on patients with “diabesity”: results of observational studies of pooled analyses in obese hypogonadal men with type 2 diabetes. Int J Endocrinol. 2014;2014:683515. This study shows that long-term testosterone therapy resulted in significant improvements of cardiometabolic risk factors and produced clinical benefits in obese, diabetic men.

    PubMed Central  PubMed  Google Scholar 

  52. Mårin P, Holmäng S, Jönsson L, Sjöström L, Kvist H, Holm G, et al. The effects of testosterone treatment on body composition and metabolism in middle-aged and obese men. Int J Obesity. 1992;16:991–7.

    Google Scholar 

  53. Woodhouse LJ, Gupta N, Bhasin M, Singh AB, Ross R, Phillips J, et al. Dose-dependent effects of testosterone on regional adipose tissue distribution in healthy young men. J Clin Endocrinol Metab. 2004;89:718–26.

    CAS  PubMed  Google Scholar 

  54. Gruenewald DA, Matsumoto AM. Testosterone supplementation therapy for older men: potential benefits and risks. J Am Geriatr Soc. 2003;51:101–15.

    PubMed  Google Scholar 

  55. Elbers JMH, Asscheman H, Seidell JC, Megens JA, Gooren LJG. Long-term testosterone administration increases visceral fat in female to male transsexuals. J Clin Endocrinol Metab. 1997;82:2044–7.

    CAS  PubMed  Google Scholar 

  56. Elbers JMH, Giltay EJ, Teerlink T, Scheffer PG, Asscheman H, Seidell JC, et al. Effects of sex steroids on components of the insulin resistance syndrome in transsexual subjects. Clin Endocrinol. 2003;58:562–71.

    CAS  Google Scholar 

  57. Glazer G. Atherogenic effects of anabolic steroids on serum lipid levels. A literature review. Arch Intern Med. 1991;151:1925–33.

    CAS  PubMed  Google Scholar 

  58. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev. 1997;18:774–800.

    CAS  PubMed  Google Scholar 

  59. Barber TM, Golding SJ, Alvey C, Wass JA, Karpe F, Franks S, et al. Global adiposity rather than abnormal regional fat distribution characterizes women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:999–1004.

    CAS  PubMed  Google Scholar 

  60. Casson PR, Toth MJ, Johnson JV, Stanczyk FZ, Casey CL, Dixon ME. Correlation of serum androgens with anthropometric and metabolic indices in healthy, nonobese postmenopausal women. J Clin Endocrinol Metab. 2010;95:4276–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Keller JL, Casson PR, Toth MJ. Relationship of androgens to body composition, energy and substrate metabolism and aerobic capacity in healthy, young women. Steroids. 2011;76:1247–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Burger HG, Dudley EC, Cui J, Dennerstein L, Hopper JL. A prospective longitudinal study of serum testosterone, dehydroepiandrosterone sulfate, and sex hormone-binding globulin levels through the menopause transition. J Clin Endocrinol Metab. 2000;85:2832–8.

    CAS  PubMed  Google Scholar 

  63. Cao Y, Zhang S, Zou S, Xia X. The relationship between endogenous androgens and body fat distribution in early and late postmenopausal women. PLoS One. 2013;8:e58448.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Field AE, Colditz GA, Willett WC, Longcope C, McKinlay JB. The relation of smoking, age, relative weight, and dietary intake to serum adrenal steroids, sex hormones, and sex hormone- binding globulin in middle-aged men. J Clin Endocrinol Metab. 1994;79:1310–6.

    CAS  PubMed  Google Scholar 

  65. Couillard C, Gagnon J, Bergeron J, Leon AS, Rao DC, Skinner JS, et al. Contribution of body fatness and adipose tissue distribution to the age variation in plasma steroid hormone concentrations in men: the HERITAGE family study. J Clin Endocrinol Metab. 2000;85:1026–31.

    CAS  PubMed  Google Scholar 

  66. Tchernof A, Després JP, Bélanger A, Dupont A, Prud'homme D, Moorjani S, et al. Reduced testosterone and adrenal C19 steroid levels in obese men. Metabolism. 1995;44:513–9.

    CAS  PubMed  Google Scholar 

  67. de Pergola G, Triggiani V, Giorgino F, Cospite MR, Garruti G, Cignarelli M, et al. The free testosterone to dehydroepiandrosterone sulphate molar ratio as a marker of visceral fat accumulation in premenopausal obese women. Int J Obes. 1994;18:659–64.

    Google Scholar 

  68. De Simone M, Verrotti A, Lughetti L, Palumbo M, Farello G, Di Cesare E, et al. Increased visceral adipose tissue is associated with increased circulating insulin and decreased sex hormone binding globulin levels in massively obese adolescent girls. J Endocrinol Invest. 2001;24:438–44.

    PubMed  Google Scholar 

  69. Barrett-Connor E, Ferrara A. Dehydroepiandrosterone, dehydroepiandrosterone sulfate, obesity, waist-hip ratio, and noninsulin-dependent diabetes in postmenopausal women: the Rancho Bernardo Study. J Clin Endocrinol Metab. 1996;81:59–64.

    CAS  PubMed  Google Scholar 

  70. Williams DP, Boyden TW, Pamenter RW, Lohman TG, Going SB. Relationship of body fat percentage and fat distribution with dehydroepiandrosterone sulfate in premenopausal females. J Clin Endocrinol Metab. 1993;77:80–5.

    CAS  PubMed  Google Scholar 

  71. Ravaglia G, Forti P, Maioli F, Boschi F, Bernardi M, Pratelli L, et al. The relationship of dehydroepiandrosterone sulfate (DHEAS) to endocrine-metabolic parameters and functional status in the oldest-old. Results from an italian study on healthy free-living over-ninety-year-olds. J Clin Endocrinol Metab. 1996;81:1173–8.

    CAS  PubMed  Google Scholar 

  72. O’Reilly MW, House PJ, Tomlinson JW. Understanding androgen action in adipose tissue. J Steroid Biochem Mol Biol. 2014;143c:277–84.

    Google Scholar 

  73. Blouin K, Veilleux A, Luu-The V, Tchernof A. Androgen metabolism in adipose tissue: Recent advances. Mol Cell Endocrinol. 2009;301:97–103.

    CAS  PubMed  Google Scholar 

  74. Veilleux A, Blouin K, Tchernof A. Mechanisms of androgenic action in adipose tissue. Clin Lipidol. 2009;4:367–78.

    CAS  Google Scholar 

  75. Ali AT, Hochfeld WE, Myburgh R, Pepper MS. Adipocyte and adipogenesis. Eur J Cel Biol. 2013;92:229–36.

    CAS  Google Scholar 

  76. Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156:20–44.

    CAS  PubMed  Google Scholar 

  77. Huang CK, Tsai MY, Luo J, Kang HY, Lee SO, Chang C. Suppression of androgen receptor enhances the self-renewal of mesenchymal stem cells through elevated expression of EGFR. Biochim Biophys Acta. 1833;2013:1222–34.

    Google Scholar 

  78. Fujioka K, Kajita K, Wu Z, Hanamoto T, Ikeda T, Mori I, et al. Dehydroepiandrosterone reduces preadipocyte proliferation via androgen receptor. Am J Physiol Endocrinol Metab. 2012;302:E694–704.

    CAS  PubMed  Google Scholar 

  79. Singh R, Artaza JN, Taylor WE, Braga M, Yuan X, Gonzalez-Cadavid NF, et al. Testosterone inhibits adipogenic differentiation in 3 T3-L1 cells: nuclear translocation of androgen receptor complex with beta-catenin and T-cell factor 4 may bypass canonical Wnt signaling to down-regulate adipogenic transcription factors. Endocrinology. 2006;147:141–54.

    CAS  PubMed  Google Scholar 

  80. Singh R, Artaza JN, Taylor WE, Gonzalez-Cadavid NF, Bhasin S. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10 T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology. 2003;144:5081–8.

    CAS  PubMed  Google Scholar 

  81. Dieudonne MN, Pecquery R, Leneveu MC, Giudicelli Y. Opposite effects of androgens and estrogens on adipogenesis in rat preadipocytes: evidence for sex and site-related specificities and possible involvement of insulin-like growth factor 1 receptor and peroxisome proliferator-activated receptor gamma2. Endocrinology. 2000;141:649–56.

    CAS  PubMed  Google Scholar 

  82. Chazenbalk G, Singh P, Irge D, Shah A, Abbott DH, Dumesic DA. Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation. Steroids. 2013;78:920–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. McNelis JC, Manolopoulos KN, Gathercole LL, Bujalska IJ, Stewart PM, Tomlinson JW, et al. Dehydroepiandrosterone exerts antiglucocorticoid action on human preadipocyte proliferation, differentiation, and glucose uptake. Am J Physiol Endocrinol Metab. 2013;305:E1134–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Blouin K, Nadeau M, Perreault M, Drolet R, Marceau P, Mailloux J, et al. Effects of Androgens on Adipocyte Differentiation and Adipose Tissue Explant Metabolism in Men and Women. Clin Endocrinol. 2009;72:176–88.

    Google Scholar 

  85. Gupta V, Bhasin S, Guo W, Singh R, Miki R, Choong K, et al. Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. Mol Cell Endocrinol. 2008;296:32–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Garcia E, Lacasa M, Agli B, Giudicelli Y, Lacasa D. Modulation of rat preadipocyte adipose conversion by androgenic status: involvement of C/EBPs transcription factors. J Endocrinol. 1999;161:89–97.

    CAS  PubMed  Google Scholar 

  87. Barbosa-Desongles A, Hernandez C, Simo R, Selva DM. Testosterone induces cell proliferation and cell cycle gene overexpression in human visceral preadipocytes. Am J Physiol Cell Physiol. 2013;305:C355–9.

    CAS  PubMed  Google Scholar 

  88. Rodriguez-Cuenca S, Monjo M, Proenza AM, Roca P. Depot differences in steroid receptor expression in adipose tissue: possible role of the local steroid milieu. Am J Physiol Endocrinol Metab. 2005;288:E200–7.

    CAS  PubMed  Google Scholar 

  89. Kolditz CI, Langin D. Adipose tissue lipolysis. Curr Opin Clin Nutr Metab Care. 2010;13:377–81.

    CAS  PubMed  Google Scholar 

  90. Chaves VE, Frasson D, Kawashita NH. Several agents and pathways regulate lipolysis in adipocytes. Biochimie. 2011;93:1631–40.

    CAS  PubMed  Google Scholar 

  91. Zierath JR, Livingston JN, Thorne A, Bolinder J, Reynisdottir S, Lonnqvist F, et al. Regional difference in insulin inhibition of non-esterified fatty acid release from human adipocytes: relation to insulin receptor phosphorylation and intracellular signalling through the insulin receptor substrate-1 pathway. Diabetologia. 1998;41:1343–54.

    CAS  PubMed  Google Scholar 

  92. Rebuffé-Scrive M, Mårin P, Björntorp P. Effect of testosterone on abdominal adipose tissue in men. Int J Obes. 1991;15:791–5.

    PubMed  Google Scholar 

  93. Xu X, de Pergola G, Björntorp P. The effects of androgens on the regulation of lipolysis in adipose precursor cells. Endocrinology. 1990;126:1229–34.

    CAS  PubMed  Google Scholar 

  94. Hernandez-Morante JJ, Perez-de-Heredia F, Lujan JA, Zamora S, Garaulet M. Role of DHEA-S on body fat distribution: gender- and depot-specific stimulation of adipose tissue lipolysis. Steroids. 2008;73:209–15.

    CAS  PubMed  Google Scholar 

  95. Varlamov O, Chu MP, McGee WK, Cameron JL, O'Rourke RW, Meyer KA, et al. Ovarian cycle-specific regulation of adipose tissue lipid storage by testosterone in female nonhuman primates. Endocrinology. 2013;154:4126–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Dicker A, Ryden M, Näslund E, Muehlen IE, Wiren M, Lafontan M, et al. Effect of testosterone on lipolysis in human pre-adipocytes from different fat depots. Diabetologia. 2004;47:420–8.

    CAS  PubMed  Google Scholar 

  97. Anderson LA, McTernan PG, Harte AL, Barnett AH, Kumar S. The regulation of HSL and LPL expression by DHT and flutamide in human subcutaneous adipose tissue. Diab Obes Metab. 2002;4:209–13.

    CAS  Google Scholar 

  98. Pecquery R, Dieudonne MN, Cloix JF, Leneveu MC, Dausse JP, Giudicelli Y. Enhancement of the expression of the α2-adrenoreceptor protein and mRNA by a direct effect of androgens in white adipocytes. Biochem Biophys Res Commun. 1995;206:112–8.

    CAS  PubMed  Google Scholar 

  99. Pecquery R, Leneveu MC, Giudicelli Y. Influence of androgenic status on the alpha 2/beta-adrenergic control of lipolysis in white fat cells: predominant alpha 2-antilipolytic response in testosterone-treated-castrated hamsters. Endocrinology. 1988;122:2590–6.

    CAS  PubMed  Google Scholar 

  100. Xu XF, de Pergola G, Björntorp P. Testosterone increases lipolysis and the number of beta- adrenoceptors in male rat adipocytes. Endocrinology. 1991;128:379–82.

    CAS  PubMed  Google Scholar 

  101. Bélanger C, Hould FS, Lebel S, Biron S, Brochu G, Tchernof A. Omental and subcutaneous adipose tissue steroid levels in obese men. Steroids. 2006;71:674–82.

    PubMed  Google Scholar 

  102. Li M, Björntorp P. Effects of testosterone on triglyceride uptake and mobilization in different adipose tissues in male rats in vivo. Obesity Res. 1995;3:113–9.

    CAS  Google Scholar 

  103. Varlamov O, White AE, Carroll JM, Bethea CL, Reddy A, Slayden O, et al. Androgen effects on adipose tissue architecture and function in nonhuman primates. Endocrinology. 2012;153:3100–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Blouin K, Richard C, Bélanger C, Dupont P, Daris M, Laberge P, et al. Local androgen inactivation in abdominal visceral adipose tissue. J Clin Endocrinol Metab. 2003;88:5944–50.

    CAS  PubMed  Google Scholar 

  105. Blouin K, Richard C, Brochu G, Hould FS, Lebel S, Marceau S, et al. Androgen inactivation and steroid-converting enzyme expression in abdominal adipose tissue in men. J Endocrinol. 2006;191:637–49.

    CAS  PubMed  Google Scholar 

  106. Blouin K, Blanchette S, Richard C, Dupont P, Luu-The V, Tchernof A. Expression and activity of steroid aldoketoreductases 1C in omental adipose tissue as positive correlates of adiposity in women. Am J Physiol Endocrinol Metab. 2005;288:E398–404.

    CAS  PubMed  Google Scholar 

  107. Blouin K, Nadeau M, Mailloux J, Daris M, Lebel S, Luu-The V, et al. Pathways of Adipose Tissue Androgen Metabolism in Women: Depot Differences and Modulation by Adipogenesis. Am J Physiol Endocrinol Metab. 2009;296:E244–55.

    CAS  PubMed  Google Scholar 

  108. Bujalska IJ, Walker EA, Tomlinson JW, Hewison M, Stewart PM. 11Beta-hydroxysteroid dehydrogenase type 1 in differentiating omental human preadipocytes: from de-activation to generation of cortisol. Endocr Res. 2002;28:449–61.

    CAS  PubMed  Google Scholar 

  109. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294:2166–70.

    CAS  PubMed  Google Scholar 

  110. Veilleux A, Rheaume C, Daris M, Luu-The V, Tchernof A. Omental adipose tissue type 1 11 beta-hydroxysteroid dehydrogenase oxoreductase activity, body fat distribution, and metabolic alterations in women. J CLin Endocrinol Metab. 2009;94:3550–7.

    CAS  PubMed  Google Scholar 

  111. Hartig SM, He B, Newberg JY, Ochsner SA, Loose DS, Lanz RB, et al. Feed-forward inhibition of androgen receptor activity by glucocorticoid action in human adipocytes. Chem Biol. 2012;19:1126–41.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Studies from our group cited in this manuscript were funded by operating grants from the Canadian Institutes of Health Research to A Tchernof and Co-investigators (MOP-53195, MOP-102642 and MOP-130313).

Mouna Zerradi, Julie Dereumetz, Marie-Michèle Boulet declare that they have no conflict of interest.

André Tchernof declares research funding obtained from Johnson & Johnson (Ethicon Endosurgery) for projects on bariatric surgery, unrelated to this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Tchernof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zerradi, M., Dereumetz, J., Boulet, MM. et al. Androgens, body fat Distribution and Adipogenesis. Curr Obes Rep 3, 396–403 (2014). https://doi.org/10.1007/s13679-014-0119-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-014-0119-6

Keywords

Navigation