Skip to main content
Log in

AMP-activated Protein Kinase (AMPK): Does This Master Regulator of Cellular Energy State Distinguish Insulin Sensitive from Insulin Resistant Obesity?

  • Obesity Treatment (CM Apovian, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Although a correlation exists between obesity and insulin resistance, roughly 25 % of obese individuals are insulin sensitive. AMP-activated protein kinase (AMPK) is a cellular energy sensor that among its many actions, integrates diverse physiological signals to restore energy balance. In addition, in many situations it also increases insulin sensitivity. In this context, AMPK activity is decreased in very obese individuals undergoing bariatric surgery who are insulin resistant compared to equally obese patients who are insulin sensitive. In this review, we will both explore what distinguishes these individuals, and evaluate the evidence that diminished AMPK is associated with insulin resistance and metabolic syndrome-associated disorders in other circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Grundy SM, Brewer Jr HB, Cleeman JI, et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Arterioscler Thromb Vasc Biol. 2004;24:e13–8.

    PubMed  CAS  Google Scholar 

  2. Morris MJ. Cardiovascular and metabolic effects of obesity. Clin Exp Pharmacol Physiol. 2008;35:416–9.

    PubMed  CAS  Google Scholar 

  3. van Kruijsdijk RC, van der Wall E, Visseren FL. Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomarkers Prev. 2009;18:2569–78.

    PubMed  Google Scholar 

  4. Samocha-Bonet D, Chisholm DJ, Tonks K, et al. Insulin-sensitive obesity in humans - a ‘favorable fat’ phenotype? Trends Endocrinol Metab. 2012;23:116–24. An extensive review that compare cardiovascular disease, type 2 diabetes, and all-cause mortality in obese humans who are insulin sensitive and insulin resistant.

    PubMed  CAS  Google Scholar 

  5. Karelis AD. Metabolically healthy but obese individuals. Lancet. 2008;372:1281–3.

    PubMed  Google Scholar 

  6. Sims EA. Are there persons who are obese, but metabolically healthy? Metabolism. 2001;50:1499–504.

    PubMed  CAS  Google Scholar 

  7. Sjostrom L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA. 2012;307:56–65. This paper also showed greater treatment benefits occur in patients with initially higher insulin levels.

    PubMed  Google Scholar 

  8. Fogarty S, Hardie DG. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta. 1804;2010:581–91.

    Google Scholar 

  9. Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007;8:774–85.

    PubMed  CAS  Google Scholar 

  10. Hue L, Rider MH. The AMP-activated protein kinase: more than an energy sensor. Essays Biochem. 2007;43:121–37.

    PubMed  CAS  Google Scholar 

  11. Woods A, Dickerson K, Heath R, et al. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005;2:21–33.

    PubMed  CAS  Google Scholar 

  12. Hurley RL, Anderson KA, Franzone JM, et al. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem. 2005;280:29060–6.

    PubMed  CAS  Google Scholar 

  13. Hawley SA, Gadalla AE, Olsen GS, et al. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes. 2002;51:2420–5.

    PubMed  CAS  Google Scholar 

  14. LeBrasseur NK, Kelly M, Tsao TS, et al. Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. Am J Physiol Endocrinol Metab. 2006;291:E175–81.

    PubMed  CAS  Google Scholar 

  15. Zhou L, Deepa SS, Etzler JC, et al. Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. J Biol Chem. 2009;284:22426–35.

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J. 2009;418:261–75.

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Dagon Y, Hur E, Zheng B, et al. p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin’s effect on food intake. Cell Metab. 2012;16:104–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  18. Minokoshi Y, Alquier T, Furukawa N, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 2004;428:569–74.

    PubMed  CAS  Google Scholar 

  19. Yang Y, Atasoy D, Su HH, et al. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell. 2011;146:992–1003.

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Kraegen EW, Saha AK, Preston E, et al. Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats. Am J Physiol Endocrinol Metab. 2006;290:E471–9.

    PubMed  CAS  Google Scholar 

  21. Saha AK, Xu XJ, Lawson E, et al. Downregulation of AMPK accompanies leucine- and glucose-induced increases in protein synthesis and insulin resistance in rat skeletal muscle. Diabetes. 2010;59:2426–34.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Ruderman NB, Carling D, Prentki M, et al. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest. 2012;123:2764–72.

    Google Scholar 

  23. Xu XJ, Gauthier MS, Hess DT, et al. Insulin sensitive and resistant obesity in humans: AMPK activity, oxidative stress, and depot-specific changes in gene expression in adipose tissue. J Lipid Res. 2012;53:792–801. The first study to characterize the differences between subcutaneous abdominal and two types of visceral fat in BMI-matched insulin sensitive and insulin resistant obese subjects. Results indicate that AMPK activity is diminished, and protein carbonylation is increased in all three depots of insulin resistant patients, whereas the expression of inflammation and other genes varied between depots.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Kola B, Christ-Crain M, Lolli F, et al. Changes in adenosine 5′-monophosphate-activated protein kinase as a mechanism of visceral obesity in Cushing’s syndrome. J Clin Endocrinol Metab. 2008;93:4969–73.

    PubMed  CAS  Google Scholar 

  25. Gauthier MS, O’Brien EL, Bigornia S, et al. Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans. Biochem Biophys Res Commun. 2011;404:382–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Park H, Kaushik VK, Constant S, et al. Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem. 2002;277:32571–7.

    PubMed  CAS  Google Scholar 

  27. Lindholm CR, Ertel RL, Bauwens JD, et al. A high-fat diet decreases AMPK activity in multiple tissues in the absence of hyperglycemia or systemic inflammation in rats. J Physiol Biochem. 2013;69:165–75.

    PubMed  CAS  Google Scholar 

  28. Caton PW, Kieswich J, Yaqoob MM, et al. Metformin opposes impaired AMPK and SIRT1 function and deleterious changes in core clock protein expression in white adipose tissue of genetically-obese db/db mice. Diabetes Obes Metab. 2011;13:1097–104.

    PubMed  CAS  Google Scholar 

  29. Gauthier MS, Miyoshi H, Souza SC, et al. AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. J Biol Chem. 2008;283:16514–24.

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11:230–41. A recent review of various links between AMPK and inflammation and their physiological relevance.

    PubMed  CAS  Google Scholar 

  31. Zhang W, Zhang X, Wang H, et al. AMP-activated protein kinase alpha1 protects against diet-induced insulin resistance and obesity. Diabetes. 2012;61:3114–25.

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Galic S, Fullerton MD, Schertzer JD, et al. Hematopoietic AMPK beta1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest. 2011;121:4903–15.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. De Leo M, Pivonello R, Auriemma RS, et al. Cardiovascular disease in Cushing’s syndrome: heart versus vasculature. Neuroendocrinology. 2010;92 Suppl 1:50–4. doi:10.1159/000318566.

    PubMed  Google Scholar 

  34. Christ-Crain M, Kola B, Lolli F, et al. AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing’s syndrome. FASEB J. 2008;22:1672–83.

    PubMed  CAS  Google Scholar 

  35. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440:944–8.

    PubMed  CAS  Google Scholar 

  36. Gregor MF, Yang L, Fabbrini E, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes. 2009;58:693–700.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366:1567–76.

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Arterburn DE, Bogart A, Sherwood NE, et al. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg. 2013;23:93–102.

    PubMed  Google Scholar 

  39. Ruderman N, Chisholm D, Pi-Sunyer X, et al. The metabolically obese, normal-weight individual revisited. Diabetes. 1998;47:699–713.

    PubMed  CAS  Google Scholar 

  40. Viollet B, Guigas B, Leclerc J, et al. AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol (Oxf). 2009;196(1):81–98. doi:10.1111/j.1748-1716.2009.01970.x.

    CAS  Google Scholar 

  41. Carlson CL, Winder WW. Liver AMP-activated protein kinase and acetyl-CoA carboxylase during and after exercise. J Appl Physiol. 1999;86(2):669–74.

    PubMed  CAS  Google Scholar 

  42. Assifi MM, Suchankova G, Constant S, et al. AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. Am J Physiol Endocrinol Metab. 2005;289(5):E794–800.

    PubMed  CAS  Google Scholar 

  43. Kelly M, Keller C, Avilucea PR, et al. AMPK activity is diminished in tissues of IL-6 knockout mice: the effect of exercise. Biochem Biophys Res Commun. 2004;320:449–54.

    PubMed  CAS  Google Scholar 

  44. Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8:1288–95.

    PubMed  CAS  Google Scholar 

  45. Ha SK, Kim J, Chae C. Role of AMP-activated protein kinase and adiponectin during development of hepatic steatosis in high-fat diet-induced obesity in rats. J Comp Pathol. 2011;145(1):88–94. doi:10.1016/j.jcpa.2010.11.011.

    PubMed  CAS  Google Scholar 

  46. Henriksen BS, Curtis ME, Fillmore N, et al. The effects of chronic AMPK activation on hepatic triglyceride accumulation and glycerol 3-phosphate acyltransferase activity with high fat feeding. Diabetol Metab Syndr. 2013;5(1):29.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Zang M, Zuccollo A, Hou X, et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J Biol Chem. 2004;279(46):47898–905.

    PubMed  CAS  Google Scholar 

  48. Muoio DM, Seefeld K, Witters LA, et al. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem J. 1999;338(Pt 3):783–91.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Rector RS, Thyfault JP, Uptergrove GM, et al. Mitochondrial dysfunction precedes insulin resistance and hepatic steatosis and contributes to the natural history of non-alcoholic fatty liver disease in an obese rodent model. J Hepatol. 2010;52(5):727–36. doi:10.1016/j.jhep.2009.11.030.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Foretz M, Ancellin N, Andreelli F, et al. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes. 2005;54(5):1331–9.

    PubMed  CAS  Google Scholar 

  51. Viana AY, Sakoda H, Anai M, et al. Role of hepatic AMPK activation in glucose metabolism and dexamethasone-induced regulation of AMPK expression. Diabetes Res Clin Pract. 2006;73(2):135–42.

    PubMed  CAS  Google Scholar 

  52. Lochhead PA, Salt IP, Walker KS, et al. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes. 2000;49:896–903.

    PubMed  CAS  Google Scholar 

  53. Cool B, Zinker B, Chiou W, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006;3(6):403–16.

    PubMed  CAS  Google Scholar 

  54. Yang J, Maika S, Craddock L, et al. Chronic activation of AMP-activated protein kinase-alpha1 in liver leads to decreased adiposity in mice. Biochem Biophys Res Commun. 2008;370(2):248–53. doi:10.1016/j.bbrc.2008.03.094.

    PubMed  CAS  Google Scholar 

  55. Boon H, Bosselaar M, Praet SF, et al. Intravenous AICAR administration reduces hepatic glucose output and inhibits whole body lipolysis in type 2 diabetic patients. Diabetologia. 2008;51(10):1893–900. doi:10.1007/s00125-008-1108-7.

    PubMed  CAS  Google Scholar 

  56. Bergeron R, Previs SF, Cline GW, et al. Effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes. 2001;50:1076–82.

    PubMed  CAS  Google Scholar 

  57. Andreelli F, Foretz M, Knauf C, et al. Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology. 2006;147:2432–41.

    PubMed  CAS  Google Scholar 

  58. Ix JH, Sharma K. Mechanisms linking obesity, chronic kidney disease, and fatty liver disease: the roles of fetuin-A, adiponectin, and AMPK. J Am Soc Nephrol. 2010;21(3):406–12. doi:10.1681/ASN.2009080820.

    PubMed  CAS  Google Scholar 

  59. Chatterjee P, Seal S, Mukherjee S, et al. Adipocyte fetuin-a contributes to macrophage migration into adipose tissue and polarization of macrophages. J Biol Chem. 2013;288(39):28324–30. doi:10.1074/jbc.C113.495473.

    PubMed  CAS  Google Scholar 

  60. Choi KM, Han KA, Ahn HJ, et al. The effects of caloric restriction on fetuin-A and cardiovascular risk factors in rats and humans: a randomized controlled trial. Clin Endocrinol (Oxf). 2013;79(3):356–63. doi:10.1111/cen.12076.

    CAS  Google Scholar 

  61. Jung TW, Youn BS, Choi HY, et al. Salsalate and adiponectin ameliorate hepatic steatosis by inhibition of the hepatokine fetuin-A. Biochem Pharmacol. 2013;86(7):960–9. doi:10.1016/j.bcp.2013.07.034.

    PubMed  CAS  Google Scholar 

  62. Stefan N, Hennige AM, Staiger H, et al. Alpha2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care. 2006;29(4):853–7.

    PubMed  CAS  Google Scholar 

  63. Dasgupta S, Bhattacharya S, Biswas A, et al. NF-kappaB mediates lipid-induced fetuin-A expression in hepatocytes that impairs adipocyte function effecting insulin resistance. Biochem J. 2010;429(3):451–62. doi:10.1042/BJ20100330.

    PubMed  CAS  Google Scholar 

  64. Oner-Iyidogan Y, Kocak H, Seyidhanoglu M, et al. Curcumin prevents liver fat accumulation and serum fetuin-A increase in rats fed a high-fat diet. J Physiol Biochem. 2013;69(4):677–86. doi:10.1007/s13105-013-0244-9.

    PubMed  Google Scholar 

  65. Kahraman A, Sowa JP, Schlattjan M, et al. Fetuin-A mRNA expression is elevated in NASH compared with NAFL patients. Clin Sci (Lond). 2013;125(8):391–400. doi:10.1042/CS20120542.

    CAS  Google Scholar 

  66. Kantartzis K, Machann J, Schick F, et al. The impact of liver fat vs visceral fat in determining categories of prediabetes. Diabetologia. 2010;53(5):882–9. doi:10.1007/s00125-010-1663-6.

    PubMed  CAS  Google Scholar 

  67. Srinivas PR, Wagner AS, Reddy LV, et al. Serum alpha 2-HS-glycoprotein is an inhibitor of the human insulin receptor at the tyrosine kinase level. Mol Endocrinol. 1993;7(11):1445–55.

    PubMed  CAS  Google Scholar 

  68. Mathews ST, Singh GP, Ranalletta M, et al. Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene. Diabetes. 2002;51(8):2450–8.

    PubMed  CAS  Google Scholar 

  69. Takata H, Ikeda Y, Suehiro T, et al. High glucose induces transactivation of the alpha2-HS glycoprotein gene through the ERK1/2 signaling pathway. J Atheroscler Thromb. 2009;16(4):448–56.

    PubMed  CAS  Google Scholar 

  70. Hennige AM, Staiger H, Wicke C, et al. Fetuin-A induces cytokine expression and suppresses adiponectin production. PLoS One. 2008;3(3):e1765. doi:10.1371/journal.pone.0001765.

    PubMed  PubMed Central  Google Scholar 

  71. Pal D, Dasgupta S, Kundu R, et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med. 2012;18(8):1279–85. doi:10.1038/nm.2851. This article described a novel finding that hepatokine fetuin-A can serve as an endogenous ligand for TLR4 under lipids-induce insulin resistance condition. Fetuin-A thus can be considered a new therapeutic target for insulin resistance and type 2 diabetes.

    PubMed  CAS  Google Scholar 

  72. Ix JH, Shlipak MG, Brandenburg VM, et al. Association between human fetuin-A and the metabolic syndrome: data from the Heart and Soul Study. Circulation. 2006;113(14):1760–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  73. Ix JH, Wassel CL, Chertow GM, et al. Fetuin-A and change in body composition in older persons. J Clin Endocrinol Metab. 2009;94(11):4492–8. doi:10.1210/jc.2009-0916.

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Ix JH, Wassel CL, Kanaya AM, et al. Fetuin-A and incident diabetes mellitus in older persons. JAMA. 2008;300(2):182–8. doi:10.1001/jama.300.2.182.

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Sun Q, Cornelis MC, Manson JE, et al. Plasma levels of fetuin-A and hepatic enzymes and risk of type 2 diabetes in women in the U.S. Diabetes. 2013;62(1):49–55.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Jensen MK, Bartz TM, Djousse L, et al. Genetically elevated fetuin-A levels, fasting glucose levels, and risk of type 2 diabetes: the Cardiovascular Health Study. Diabetes Care. 2013;36(10):3121–7. doi:10.2337/dc12-2323.

    PubMed  CAS  Google Scholar 

  77. Ix JH, Biggs ML, Mukamal KJ, et al. Association of fetuin-a with incident diabetes mellitus in community-living older adults: the cardiovascular health study. Circulation. 2012;125(19):2316–22. doi:10.1161/CIRCULATIONAHA.111.072751.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Jensen MK, Bartz TM, Mukamal KJ, et al. Fetuin-A, type 2 diabetes, and risk of cardiovascular disease in older adults: the cardiovascular health study. Diabetes Care. 2013;36(5):1222–8. doi:10.2337/dc12-1591.

    PubMed  CAS  Google Scholar 

  79. Laughlin GA, Cummins KM, Wassel CL, et al. The association of fetuin-A with cardiovascular disease mortality in older community-dwelling adults: the Rancho Bernardo study. J Am Coll Cardiol. 2012;59(19):1688–96. doi:10.1016/j.jacc.2012.01.038.

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Fiore CE, Celotta G, Politi GG, et al. Association of high alpha2-Heremans-Schmid glycoprotein/fetuin concentration in serum and intima-media thickness in patients with atherosclerotic vascular disease and low bone mass. Atherosclerosis. 2007;195(1):110–5.

    PubMed  CAS  Google Scholar 

  81. Mori K, Emoto M, Araki T, et al. Association of serum fetuin-A with carotid arterial stiffness. Clin Endocrinol (Oxf). 2007;66(2):246–50.

    CAS  Google Scholar 

  82. Rittig K, Thamer C, Haupt A, et al. High plasma fetuin-A is associated with increased carotid intima-media thickness in a middle-aged population. Atherosclerosis. 2009;207(2):341–2. doi:10.1016/j.atherosclerosis.2009.05.018.

    PubMed  CAS  Google Scholar 

  83. Dogru T, Genc H, Tapan S, et al. Plasma fetuin-A is associated with endothelial dysfunction and subclinical atherosclerosis in subjects with nonalcoholic fatty liver disease. Clin Endocrinol (Oxf). 2013;78(5):712–7. doi:10.1111/j.1365-2265.2012.04460.x.

    CAS  Google Scholar 

  84. Tuttolomondo A, Di Raimondo D, Di Sciacca R, et al. Fetuin-A and CD40 L plasma levels in acute ischemic stroke: differences in relation to TOAST subtype and correlation with clinical and laboratory variables. Atherosclerosis. 2010;208(1):290–6. doi:10.1016/j.atherosclerosis.2009.07.032.

    PubMed  CAS  Google Scholar 

  85. Voros K, Graf Jr L, Prohaszka Z, et al. Serum fetuin-A in metabolic and inflammatory pathways in patients with myocardial infarction. Eur J Clin Invest. 2011;41(7):703–9. doi:10.1111/j.1365-2362.2010.02456.x.

    PubMed  CAS  Google Scholar 

  86. Weikert C, Stefan N, Schulze MB, et al. Plasma fetuin-a levels and the risk of myocardial infarction and ischemic stroke. Circulation. 2008;118(24):2555–62. doi:10.1161/CIRCULATIONAHA.108.814418.

    PubMed  CAS  Google Scholar 

  87. Jung C-H, Kim B-Y, Kim C-H, et al. Associations of serum fetuin-A levels with insulin resistance and vascular complications in patients with type 2 diabetes. Diabetes Vasc Dis Res. 2013;10:459–67.

    Google Scholar 

  88. Lorant DP, Grujicic M, Hoebaus C, et al. Fetuin-A levels are increased in patients with type 2 diabetes and peripheral arterial disease. Diabetes Care. 2011;34(1):156–61. doi:10.2337/dc10-0788.

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Brix JM, Stingl H, Hollerl F, et al. Elevated Fetuin-A concentrations in morbid obesity decrease after dramatic weight loss. J Clin Endocrinol Metab. 2010;95(11):4877–81. doi:10.1210/jc.2010-0148.

    PubMed  CAS  Google Scholar 

  90. Reinehr T, Roth CL. Fetuin-A and its relation to metabolic syndrome and fatty liver disease in obese children before and after weight loss. J Clin Endocrinol Metab. 2008;93:4479–85.

    PubMed  CAS  Google Scholar 

  91. Malin SK, Mulya A, Fealy CE, et al. Fetuin-A is linked to improved glucose tolerance after short-term exercise training in non-alcoholic fatty liver disease. J Appl Physiol. 2013;115(7):988–94. doi:10.1152/japplphysiol.00237.2013.

    PubMed  CAS  Google Scholar 

  92. Jenkins NT, McKenzie JA, Hagberg JM, et al. Plasma fetuin-A concentrations in young and older high- and low-active men. Metabolism. 2011;60(2):265–71. doi:10.1016/j.metabol.2010.01.026.

    PubMed  CAS  PubMed Central  Google Scholar 

  93. Haukeland JW, Dahl TB, Yndestad A, et al. Fetuin A in nonalcoholic fatty liver disease: in vivo and in vitro studies. Eur J Endocrinol. 2012;166(3):503–10. doi:10.1530/EJE-11-0864.

    PubMed  CAS  Google Scholar 

  94. Mori K, Emoto M, Araki T, et al. Effects of pioglitazone on serum fetuin-A levels in patients with type 2 diabetes mellitus. Metabolism. 2008;57(9):1248–52. doi:10.1016/j.metabol.2008.04.019.

    PubMed  CAS  Google Scholar 

  95. Tilg H, Kaser A. Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest. 2011;121:2126–32.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Karlsson F, Tremaroli V, Nielsen J, et al. Assessing the human gut microbiota in metabolic diseases. Diabetes. 2013;62:3341–9.

    PubMed  CAS  Google Scholar 

  97. Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–23.

    PubMed  PubMed Central  Google Scholar 

  98. Backhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104:979–84.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Cabreiro F, Au C, Leung KY, et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell. 2013;153:228–39.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Kwon HS, Ott M. The ups and downs of SIRT1. Trends Biochem Sci. 2008;33:517–25.

    PubMed  CAS  Google Scholar 

  101. Boutant M, Canto C. SIRT1 metabolic actions: integrating recent advances from mouse models. Mol Metab. 2014. doi:10.1016/j.molmet.2013.10.006.

    PubMed  PubMed Central  Google Scholar 

  102. Suwa M, Nakano H, Radak Z, et al. Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle. Metabolism. 2008;57:986–98.

    PubMed  CAS  Google Scholar 

  103. Chen D, Bruno J, Easlon E, et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008;22:1753–7.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Pfluger PT, Herranz D, Velasco-Miguel S, et al. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A. 2008;105:9793–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD + metabolism and SIRT1 activity. Nature. 2009;458:1056–60.

    PubMed  CAS  PubMed Central  Google Scholar 

  106. Lan F, Cacicedo JM, Ruderman N, et al. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem. 2008;283:27628–35.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Ruderman NB, Xu XJ, Nelson L, et al. AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab. 2010;298:E751–60. This article reviews the inter-relationship of SIRT1 and AMK in regulating each other and additional molecules that affect cellular function and the predisposition to metabolic syndrome-associated diseases.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Brenmoehl J, Hoeflich A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion. 2013;13:755–61.

    PubMed  CAS  Google Scholar 

  109. Gillum MP, Kotas ME, Erion DM, et al. SirT1 regulates adipose tissue inflammation. Diabetes. 2011;60:3235–45.

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Chalkiadaki A, Guarente L. High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab. 2012;16:180–8.

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Xu XJ, Pories WJ, Dohm LG, et al. What distinguishes adipose tissue of severely obese humans who are insulin sensitive and resistant? Curr Opin Lipidol. 2013;24:49–56.

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Peng Y, Rideout DA, Rakita SS, et al. Does LKB1 mediate activation of hepatic AMP-protein kinase (AMPK) and sirtuin1 (SIRT1) after Roux-en-Y gastric bypass in obese rats? J Gastrointest Surg. 2010;14:221–8.

    PubMed  Google Scholar 

  113. Price NL, Gomes AP, Ling AJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15:675–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62. doi:10.1038/nrm3311.

    PubMed  CAS  Google Scholar 

  115. Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89(3):1025–78. doi:10.1152/physrev.00011.2008.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Neil B. Ruderman has received grant support and support for travel to meetings for the study or otherwise from NIH.

Compliance with Ethics Guidelines

Conflict of Interest

X. Julia Xu declares that she has no conflict of interest.

Rudy J. Valentine declares that he has no conflict of interest.

Neil B. Ruderman has received grant support from Takeda for studies of GLIP-1 activation of AMPK in endothelial cells.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Julia Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X.J., Valentine, R.J. & Ruderman, N.B. AMP-activated Protein Kinase (AMPK): Does This Master Regulator of Cellular Energy State Distinguish Insulin Sensitive from Insulin Resistant Obesity?. Curr Obes Rep 3, 248–255 (2014). https://doi.org/10.1007/s13679-014-0095-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-014-0095-x

Keywords

Navigation