Skip to main content
Log in

A linear formulation with \(O(n^2)\) variables for quadratic assignment problems with Manhattan distance matrices

  • Original Paper
  • Published:
EURO Journal on Computational Optimization

Abstract

We present an integer linear formulation that uses the so-called “distance variables” to solve the quadratic assignment problem (QAP). The formulation performs particularly well for problems with Manhattan distance matrices. It involves \(O(n^2)\) variables. Valid equalities and inequalities are proposed divided into two families. First, a family of inequalities valid for any quadratic assignment problems, and second, a family valid only for problems with Manhattan distance matrices, for which we exploit metric properties, as well as an algebraic characterization that Mittelman and Peng (SIAM J Opt 2010:20(6), 3408–3426, 2010) recently proved. We numerically tested the lower bound provided by the linear relaxation using instances of the quadratic assignment problem library (QAPLIB) with randomly generated distance matrices, as well as Manhattan distance matrices. Our results are compared with the best known lower bounds. For Manhattan distance matrices, the formulation gives a very competitive lower bound in a short computational time, improving seven best lower bounds of QAPLIB instances for which no optimality proofs exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams WP, Guignard M, Hahn PM, Hightower WL (2007) A level-2 reformulation-linearization-technique bound for the quadratic assignment problem. Disc Opt 180:983–996

    Google Scholar 

  • Adams WP, Johnson TA (1994) Improved linear programming-based lower bounds for the quadratic assignment problem. DIMACS Ser Disc Math Theor Comput Sci 16:43–75

    Google Scholar 

  • Adams WP, Sherali HD (1990) Linearization strategies for a class of zero-one mixed integer programming problems. Oper Res 38(2):217–226

    Article  Google Scholar 

  • Amaral ARS, Caprara A, Letchford AN, Salazar-Gonzáles JJ (2008) A new lower bound for the minimum arrangement of a graph. Electron Notes Disc Math 30:87–92

    Article  Google Scholar 

  • Balinski ML, Russakoff A (1974) On the assignment polytope. SIAM Rev 16:516–525

    Article  Google Scholar 

  • Birkhoff G (1946) Tres observaciones sobre el algebra lineal. Rev Univ Nac Tucum (A) 5:147–151

    Google Scholar 

  • Burer S, Vandenbussche D (2006) Solving lift-and-project relaxations of binary integer programs. SIAM J Opt 16(3):726–750

    Article  Google Scholar 

  • Burkard RE, Karisch SE, Rendl F (1997) Qaplib— a quadratic assignment problem library. J Global Opt 10:391–403

    Article  Google Scholar 

  • Caprara A, Letchford AN, Salazar-González JJ (2011) Decorous lower bounds for minimum linear arrangement. INFORMS J Comput 23(1):26–40

    Article  Google Scholar 

  • Caprara A, Salazar-González JJ (2005) Laying out sparse graphs with provably minimum bandwidth. INFORMS J Comput 17:356–373

    Article  Google Scholar 

  • Eschermann B, Wunderlich HJ (1990) Optimized synthesis of self-testable finite state machines. In: 20th International symposium on fault-tolerant computing (FFTCS 20), Newcastle upon Tyne (26–28th June, 1990)

  • Fischetti M, Monaci M, Salvagnin D (2012) Three ideas for the quadratic assignment problem. Oper Res 60:954–964

    Article  Google Scholar 

  • Floyd RW (1962) Algorithm 97. Commun ACM 5:345

    Article  Google Scholar 

  • Fortet R (1959) L’algèbre de boole et ses applications en recherche opérationnelle. Cahier du Centre d’Etudes de Recherche Opérationnelle 1:5–36

    Google Scholar 

  • Fortet R (1960) Application de l’algèbre de boole en recherche opérationnelle. Revue Française de Recherche Opérationnelle 4:17–26

    Google Scholar 

  • Frieze AM, Yadegar J (1983) On the quadratic assignment problem. Disc Appl Math 5:89–98

    Article  Google Scholar 

  • Garey M, Johnson D (1979) Computers and intractibility: a guide to the theory of NP-completeness. W.H. Freeman & Company, London

  • Gilmore PC (1962) Optimal and suboptimal algorithms for the quadratic assignment problem. J Soc Indu Appl Math 10(2):305–313

    Article  Google Scholar 

  • Glover F (1975) Improved linear integer programming formulations of nonlinear integer problems. Manag Sci 22(4):455–460

    Article  Google Scholar 

  • Gonçalves AD, Drummond LMA, Pessoa AA, Hahn PM (2013) Improving lower bounds for the quadratic assignment problem by applying a distributed dual ascent algorithm. Corr abs/1304.0267

  • Hadley SW, Rendl E, Wolkowicz H (1992) A new lower bound via projection for the quadratic assignment problem. Math Oper Res 17:727–739

    Article  Google Scholar 

  • Hahn PM, Zhu YR, Guignard M, Hightower WL, Saltzman MJ (2012) A level-3 reformulation-linearization technique-based bound for the quadratic assignment problem. INFORMS J Comput 24(2):202–209

    Article  Google Scholar 

  • Karisch SE, Rendl F (1995) Lower bounds for the quadratic assignment problem via triangle decompositions. Math Program 71:137–151

    Google Scholar 

  • Karish SE (1995) Nonlinear approaches for quadratic assignment and graph partition problems. Ph.d. thesis, Technical University Graz, Austria

  • Kaufman L, Broeckx F (1978) An algorithm for the quadratic assignment problem using benders decomposition. Eur J Oper Res 2:204–211

    Article  Google Scholar 

  • Koopmans TC, Beckmann MJ (1957) Assignment problems and the location of economic activities. Econometrica 25:53–76

    Article  Google Scholar 

  • Lawler EL (1963) The quadratic assignment problem. Manag Sci 9(4):586–599

    Article  Google Scholar 

  • Liu W, Vanelli A (1995) Generating lower bounds for the linear arrangement problem. Disc Appl Math 59:137–151

    Article  Google Scholar 

  • Mittelman H, Peng J (2010) Estimating bounds for quadratic assignment problems associated with hamming and manhattan distance matrices based on semidefinite programming. SIAM J Opt 20(6):3408–3426

    Article  Google Scholar 

  • Nemhauser GL, Wolsey LA (1979) Integer and combinatorial optimization. Wiley, New Jersey

  • Nugent CE, Vollman TE, Ruml J (1968) An experimental comparison of techniques for the assignment of facilities to locations. Oper Res 16(1):150–173

    Article  Google Scholar 

  • Nyberg A, Westerlund T (2012) A new exact discrete linear reformulation of the quadratic assignment problem. Eur J Oper Res 220(2):314–319

    Article  Google Scholar 

  • Rendl F, Sotirov R (2007) Bounds for the quadratic assignment problem using the bundle method. Math Program 109:505–524

    Article  Google Scholar 

  • Resende MGC, Ramakrishnan KG, Drezner Z (1995) Computing lower bounds for the quadratic assignment problem with an interior point algorithm for linear programming. Oper Res 43(5):781–791

    Article  Google Scholar 

  • Scriabin M, Vergin RC (1975) Comparison of computer algorithms and visual based methods for plant layout. Manag Sci 22:172–187

    Article  Google Scholar 

  • Skorin-Kapov J (1990) Tabu search applied to the quadratic assingnment problem. ORSA J Comput 2(1):33–45

    Article  Google Scholar 

  • Taillard ED (1991) Robust tabu search for the quadratic assingnment problem. Parallel Comput 17:443–455

    Article  Google Scholar 

  • Taillard ED (1995) Comparison of iterative searches for the quadratic assingnment problem. Location Sci 3:87–105

    Article  Google Scholar 

  • Thonemann UW, Bölte A (1994) An improved simulated annealing algorithm for the quadratic assignment problem. Working paper, School of Business, Department of Production and Operations Research, University of Paderborn, Germany

  • Warshall S (1962) A theorem on boolean matrix. J ACM 9:11

    Article  Google Scholar 

  • Wilhem MR, Ward TL (1987) Solving quadratic assignment problems by simulated annealing. IIE Trans 19(1):107–119

    Article  Google Scholar 

  • Zhao Q (1996) Semidefinite programming for assignment and partitioning problems. Ph.d. thesis, University of Waterloo, Ontario, Canada

  • Zhao Q, Karisch SE, Rendl F, Wolkowicz H (1998) Semidefinite relaxations for the quadratic assignment problem. J Combin Opt 2:71–109

    Article  Google Scholar 

Download references

Acknowledgments

We thank Judith Bordt, as well as the three referees, for their careful readings and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serigne Gueye.

Appendices

Proof of Theorem 6

Proof

Let us prove that the points defined in Theorem 6,

$$\begin{aligned} D^0, \ D^{rs}, \ D^{m+1}, \ D^{m+2}, \end{aligned}$$

with \(1 \le r < s \le n, and ~(r,s) \notin \{(i_0,j_0);(i_0,h_0);(j_0,h_0)\)}, are \(n(n-1)/2\) affinely independent points.

Let \(\alpha ^0\), \(\alpha ^{rs}\), \(\alpha ^{m+1}\), and \(\alpha ^{m+2}\) be some associated scalars satisfying

$$\begin{aligned} \alpha ^0 D^0 + \sum \limits _{{\begin{array}{c} 1 \le r < s \le n \\ {(r,s) \notin \{(i_0,j_0);(i_0,h_0);(j_0,h_0)\}} \end{array}}} \alpha ^{rs} D^{rs} + \alpha ^{m+1} D^{m+1} + \alpha ^{m+2} D^{m+2} = 0 \end{aligned}$$
(23)
$$\begin{aligned} \alpha ^0 + \sum \limits _{{\begin{array}{c} 1 \le r < s \le n \\ {(r,s) \notin \{(i_0,j_0);(i_0,h_0);(j_0,h_0)\}} \end{array}}} \alpha ^{rs} + \alpha ^{m+1} + \alpha ^{m+2} = 0 \end{aligned}$$
(24)

For any fixed values \(r_0\) and \(s_0\) such that \(1 \le r_0 < s_0 \le n, (r_0,s_0) \notin \{(i_0,j_0);(i_0,h_0);(j_0,h_0)\}\), the equation (23) gives

$$\begin{aligned} \alpha ^0 D^0_{r_0s_0} + \alpha ^{r_0s_0}( D^{0}_{r_0s_0} + M)+ \sum \limits _{{\begin{array}{c} 1 \le r < s \le n \\ (r,s) \ne (r_0,s_0) \\ (r,s) \notin \{(i_0,j_0);(i_0,h_0);(j_0,h_0)\} \end{array}}} \alpha ^{rs} D^{0}_{r_0s_0} + \alpha ^{m+1} D^{0}_{r_0s_0} + \alpha ^{m+2} D^{0}_{r_0s_0} = 0\\ \Rightarrow D^{0}_{r_0s_0} [\alpha ^0 + \sum \limits _{{\begin{array}{c} 1 \le r < s \le n \\ (r,s) \ne (r_0,s_0)\\ (r,s) \notin \{(i_0,j_0);(i_0,h_0);(j_0,h_0)\} \end{array}}} \alpha ^{rs} + \alpha ^{m+1} + \alpha ^{m+2}] + \alpha ^{r_0s_0}( D^{0}_{r_0s_0} + M) = 0 \end{aligned}$$

Equation (24) implies

$$\begin{aligned}&\Rightarrow D^{0}_{r_0s_0} [-\alpha ^{r_0s_0}] + \alpha ^{r_0s_0}( D^{0}_{r_0s_0} + M) = 0 \\&\Rightarrow \alpha ^{r_0s_0} = 0 \end{aligned}$$

It follows that

$$\begin{aligned}&\displaystyle \alpha ^0 D^0 + \alpha ^{m+1} D^{m+1} + \alpha ^{m+2} D^{m+2} = 0&\end{aligned}$$
(25)
$$\begin{aligned}&\displaystyle \alpha ^0 + \alpha ^{m+1} + \alpha ^{m+2} = 0.&\end{aligned}$$
(26)

Thus

$$\begin{aligned} \alpha ^0 D^0_{i_0j_0} + \alpha ^{m+1} (D^0_{i_0j_0} + M) + \alpha ^{m+2} (D^0_{i_0j_0} + M)&= 0\\ \alpha ^0 D^0_{i_0h_0} + \alpha ^{m+1} (D^0_{i_0h_0} + M) + \alpha ^{m+2} D^0_{i_0h_0}&= 0\\ \alpha ^0 D^0_{j_0h_0} + \alpha ^{m+1} D^0_{j_0h_0} + \alpha ^{m+2} (D^0_{j_0h_0} + M)&= 0. \end{aligned}$$

These equations together with equation (26) imply that \(\alpha ^0 = \alpha ^{m+2} = \alpha ^{m+2} = 0\). Thus the points are, by definition, affinely independent. \(\square \)

Proof of Theorem 7

Proof

Let us prove that the points defined in Theorem 7,

$$\begin{aligned} D^0, \ D^{rs}, \ D^{i_0 j_0}, \ D^{i_0 h_0}, \end{aligned}$$

with \(1 \le r < s \le n, (r,s) \notin \{(i_0,j_0);(i_0,h_0);(j_0,h_0)\}\), are \(n(n-1)/2\) affinely independent points.

Let \(\alpha ^0\), \(\alpha ^{rs}\), \(\alpha ^{i_0 j_0}\), and \(\alpha ^{i_0 h_0}\) with \(1 \le r < s \le n \) and \((r,s) \notin \{(i_0,j_0);(i_0,h_0);(j_0,h_0)\}\), be some scalars satisfying

$$\begin{aligned}&\displaystyle \alpha ^0 D^0 + \sum \limits _{{\begin{array}{c} 1 \le r < s \le n \\ (r,s) \notin \{(i_0,j_0);(i_0,h_0);(j_0,h_0)\} \end{array}}} \alpha ^{rs} D^{rs} + \alpha ^{i_0 j_0} D^{i_0 j_0} + \alpha ^{i_0 h_0} D^{i_0 h_0} = 0&\end{aligned}$$
(27)
$$\begin{aligned}&\displaystyle \alpha ^0 + \sum \limits _{{\begin{array}{c} 1 \le r < s \le n \\ (r,s) \notin \{(i_0,j_0);(i_0,h_0);(j_0,h_0)\} \end{array}}} \alpha ^{rs} + \alpha ^{i_0 j_0} + \alpha ^{i_0 h_0} = 0.&\end{aligned}$$
(28)

For \(i_0\) and \(j_0\), the Eq. (27) gives

$$\begin{aligned}&\alpha ^0 D^0_{i_0j_0} + \sum \limits _{{{\begin{array}{c} 1 \le r < s \le n \\ (r,s) \notin \{(i_0,j_0);(i_0,h_0);(j_0,h_0)\} \end{array}}}} \alpha ^{rs} D^{0}_{i_0j_0} + \alpha ^{i_0 j_0} D^{i_0j_0}_{i_0j_0} + \alpha ^{i_0 h_0} D^{i_0h_0}_{i_0j_0} = 0\\&\Rightarrow \alpha ^0 + \sum \limits _{{{\begin{array}{c} 1 \le r < s \le n \\ (r,s) \notin \{(i_0,j_0);(i_0,h_0);(j_0,h_0)\} \end{array}}}} \alpha ^{rs} + \alpha ^{i_0 j_0}2 + \alpha ^{i_0 h_0} = 0. \end{aligned}$$

And (28) \(\Rightarrow \) \(\alpha ^{i_0 j_0} = 0\).

Similarly,

$$\begin{aligned}&\alpha ^0 D^0_{i_0h_0} + \sum \limits _{{{\begin{array}{c} 1 \le r < s \le n \\ (r,s) \notin \{(i_0,j_0);(i_0,h_0);(j_0,h_0)\} \end{array}}}} \alpha ^{rs} D^{0}_{i_0h_0} + \alpha ^{i_0 j_0} D^{i_0j_0}_{i_0h_0} + \alpha ^{i_0 h_0} D^{i_0h_0}_{i_0h_0} = 0\\ \Rightarrow&\alpha ^0 + \sum \limits _{{{\begin{array}{c} 1 \le r < s \le n \\ (r,s) \notin \{(i_0,j_0);(i_0,h_0);(j_0,h_0)\} \end{array}}}} \alpha ^{rs} + \alpha ^{i_0 j_0} + \alpha ^{i_0 h_0}2 = 0\\ \Rightarrow&\alpha ^{i_0 h_0} = 0. \end{aligned}$$

Because \(\alpha ^{i_0 h_0} = \alpha ^{i_0 j_0} = 0\), and because the vectors \(D^0\) and \(D^{rs}\) are affinely independent for a sufficient value of \(M\), the scalars \(\alpha ^0\) and \(\alpha ^{rs}\) are also null, which concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gueye, S., Michelon, P. A linear formulation with \(O(n^2)\) variables for quadratic assignment problems with Manhattan distance matrices. EURO J Comput Optim 3, 79–110 (2015). https://doi.org/10.1007/s13675-014-0033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13675-014-0033-4

Keywords

Mathematics Subject Classification

Navigation