Skip to main content

Advertisement

Log in

The Role of Copper in Human Diet and Risk of Dementia

  • Neurological Disease and Cognitive Function (G Logroscino, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is one of the most devastating epidemics of the twenty-first century, and no cure is currently available. One third of all AD cases can be attributed to modifiable risk factors (such as physical inactivity, smoking, hypertension, diabetes, and obesity in middle age). Accordingly, seven nutritional and lifestyle guidelines for the prevention of AD have been proposed to the public. The present review addresses the fifth guideline, which focuses on the significance of the breakdown of copper homeostasis as a risk factor for AD. Dietary copper in the human diet, the physiological pathway of copper in the body, copper metabolic abnormalities in AD (as revealed by clinical studies and large population datasets), and the onset of copper metabolic abnormalities (as a result of the interplay between copper intake and genetic defects linked primarily to the ATP7B gene) are reported herein. Data are discussed in the framework of evidence-based medicine to guide decision-making in AD clinical practice and prevention towards the adoption of an adequate dietary copper regimen in susceptible individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005;366(9503):2112–7. doi:10.1016/S0140-6736(05)67889-0.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94. doi:10.1016/S1474-4422(14)70136-X. This article presents the preventive potential of Alzheimer’s disease.

    Article  PubMed  Google Scholar 

  3. Barnard ND, Bush AI, Ceccarelli A, Cooper J, de Jager CA, Erickson KI, et al. Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging. 2014;35 Suppl 2:S74–8. doi:10.1016/j.neurobiolaging.2014.03.033. This article presents dietary and lifestyle guidelines for the Prevention of Alzheimer’s Disease.

    Article  PubMed  Google Scholar 

  4. Pal A, Siotto M, Prasad R, Squitti R. Towards a unified vision of copper involvement in Alzheimer’s Disease: a review connecting basic, experimental, and clinical research. J Alzheimers Dis. 2014. This review discusses the coherence of diverse types of evidence of copper involvement in Alzheimer’s disease.

  5. Squitti R, Siotto M, Polimanti R. Low-copper diet as a preventive strategy for Alzheimer’s disease. Neurobiol Aging. 2014;35 Suppl 2:S40–50. doi:10.1016/j.neurobiolaging.2014.02.031. This article presents data about copper involvement in Alzheimer’s disease from a nutritional perspective.

    Article  CAS  PubMed  Google Scholar 

  6. Deveau M. Contribution of drinking water to dietary requirements of essential metals. J Toxic Environ Health A. 2010;73(2):235–41. doi:10.1080/15287390903340880.

    Article  CAS  Google Scholar 

  7. Ahmad Z, Pandey R, Sharma S, Khuller GK. Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci. 2006;48(3):171–6.

    PubMed  Google Scholar 

  8. Barrington JW, Lindsay P, James D, Smith S, Roberts A. Selenium deficiency and miscarriage: a possible link? Br J Obstet Gynaecol. 1996;103(2):130–2.

    Article  CAS  PubMed  Google Scholar 

  9. Turnlund JR. Human whole-body copper metabolism. Am J Clin Nutr. 1998;67(5 Suppl):960S–4.

    CAS  PubMed  Google Scholar 

  10. Turnlund JR, Keyes WR, Anderson HL, Acord LL. Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am J Clin Nutr. 1989;49(5):870–8.

    CAS  PubMed  Google Scholar 

  11. Kaler SG. ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol. 2011;7(1):15–29. doi:10.1038/nrneurol.2010.180.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kaler SG, Holmes CS, Goldstein DS, Tang J, Godwin SC, Donsante A, et al. Neonatal diagnosis and treatment of Menkes disease. N Engl J Med. 2008;358(6):605–14. doi:10.1056/NEJMoa070613.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Walshe JM. Wilson’s disease: the importance of measuring serum caeruloplasmin non-immunologically. Ann Clin Biochem. 2003;40(Pt 2):115–21. doi:10.1258/000456303763046021.

    Article  CAS  PubMed  Google Scholar 

  14. Fujiwara N, Iso H, Kitanaka N, Kitanaka J, Eguchi H, Ookawara T, et al. Effects of copper metabolism on neurological functions in Wistar and Wilson’s disease model rats. Biochem Biophys Res Commun. 2006;349(3):1079–86. doi:10.1016/j.bbrc.2006.08.139.

    Article  CAS  PubMed  Google Scholar 

  15. Morris MC, Evans DA, Tangney CC, Bienias JL, Schneider JA, Wilson RS, et al. Dietary copper and high saturated and trans fat intakes associated with cognitive decline. Arch Neurol. 2006;63(8):1085–8. doi:10.1001/archneur.63.8.1085.

    Article  PubMed  Google Scholar 

  16. Mursu J, Robien K, Harnack LJ, Park K, Jacobs Jr DR. Dietary supplements and mortality rate in older women: the Iowa Women’s Health Study. Arch Intern Med. 2011;171(18):1625–33. doi:10.1001/archinternmed.2011.445. This article presents data of supplements effects on the rate of mortality.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Georgopoulos PG, Roy A, Yonone-Lioy MJ, Opiekun RE, Lioy PJ. Environmental copper: its dynamics and human exposure issues. J Toxicol Environ Health B Crit Rev. 2001;4(4):341–94. doi:10.1080/109374001753146207.

    Article  CAS  PubMed  Google Scholar 

  18. WHO. Copper. Copper in drinking-water. Geneva: World Health Organization; 2004. p. 1–23.

    Google Scholar 

  19. Shen XL, Yu JH, Zhang DF, Xie JX, Jiang H. Positive relationship between mortality from Alzheimer’s disease and soil metal concentration in Mainland China. J Alzheimers Dis. 2014;42(3):893–900. doi:10.3233/JAD-140153. This article provides data about the impact of metal in the soil and mortality for Alzheimer’s disease in mainland China.

    CAS  PubMed  Google Scholar 

  20. Narasaki M. Laboratory and histological similarities between Wilson’s disease and rats with copper toxicity. Acta Med Okayama. 1980;34(2):81–90.

    CAS  PubMed  Google Scholar 

  21. Leiva J, Palestini M, Infante C, Goldschmidt A, Motles E. Copper suppresses hippocampus LTP in the rat, but does not alter learning or memory in the morris water maze. Brain Res. 2009;1256:69–75. doi:10.1016/j.brainres.2008.12.041.

    Article  CAS  PubMed  Google Scholar 

  22. Ozcelik D, Uzun H. Copper intoxication; antioxidant defenses and oxidative damage in rat brain. Biol Trace Elem Res. 2009;127(1):45–52. doi:10.1007/s12011-008-8219-3.

    Article  CAS  PubMed  Google Scholar 

  23. Halatek T, Lutz P, Krajnow A, Stetkiewicz J, Domeradzka K, Swiercz R, et al. Assessment of neurobehavioral and biochemical effects in rats exposed to copper smelter dusts. J Environ Sci Health, Part A: Tox Hazard Subst Environ Eng. 2011;46(3):230–41. doi:10.1080/10934529.2011.535407.

    Article  CAS  Google Scholar 

  24. Mao X, Ye J, Zhou S, Pi R, Dou J, Zang L, et al. The effects of chronic copper exposure on the amyloid protein metabolisim associated genes’ expression in chronic cerebral hypoperfused rats. Neurosci Lett. 2012;518(1):14–8. doi:10.1016/j.neulet.2012.04.030.

    Article  CAS  PubMed  Google Scholar 

  25. An L, Liu S, Yang Z, Zhang T. Cognitive impairment in rats induced by nano-CuO and its possible mechanisms. Toxicol Lett. 2012;213(2):220–7. doi:10.1016/j.toxlet.2012.07.007.

    Article  CAS  PubMed  Google Scholar 

  26. Arcaya JL, Tejeda CM, Salazar U, Silva EJ, Urdaneta K, Varela K. Copper intoxication decreases lifespan and induces neurologic alterations in Drosophila melanogaster. Investig Clin. 2013;54(1):47–57.

    Google Scholar 

  27. Singh I, Sagare AP, Coma M, Perlmutter D, Gelein R, Bell RD, et al. Low levels of copper disrupt brain amyloid-beta homeostasis by altering its production and clearance. Proc Natl Acad Sci U S A. 2013;110(36):14771–6. doi:10.1073/pnas.1302212110. This article presents data about the non-ceruloplasmin copper causative association with Alzheimer’s disease.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Pal A, Badyal RK, Vasishta RK, Attri SV, Thapa BR, Prasad R. Biochemical, histological, and memory impairment effects of chronic copper toxicity: a model for non-Wilsonian brain copper toxicosis in Wistar rat. Biol Trace Elem Res. 2013;153(1–3):257–68. doi:10.1007/s12011-013-9665-0.

    Article  CAS  PubMed  Google Scholar 

  29. Pal A, Vasishta R, Prasad R. Hepatic and hippocampus iron status is not altered in response to increased serum ceruloplasmin and serum “free” copper in Wistar rat model for non-Wilsonian brain copper toxicosis. Biol Trace Elem Res. 2013;154(3):403–11. doi:10.1007/s12011-013-9753-1.

    Article  CAS  PubMed  Google Scholar 

  30. Arnal N, Dominici L, de Tacconi MJ, Marra CA. Copper-induced alterations in rat brain depends on route of overload and basal copper levels. Nutrition. 2014;30(1):96–106. doi:10.1016/j.nut.2013.06.009.

    Article  CAS  PubMed  Google Scholar 

  31. Ma Q, Ying M, Sui X, Zhang H, Huang H, Yang L, et al. Chronic copper exposure causes spatial memory impairment, selective loss of hippocampal synaptic proteins, and activation of PKR/eIF2alpha pathway in Mice. J Alzheimers Dis. 2015;43(4):1413–27. doi:10.3233/JAD-140216.

    CAS  PubMed  Google Scholar 

  32. Sparks DL, Schreurs BG. Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2003;100(19):11065–9. doi:10.1073/pnas.1832769100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Sparks DL, Friedland R, Petanceska S, Schreurs BG, Shi J, Perry G, et al. Trace copper levels in the drinking water, but not zinc or aluminum influence CNS Alzheimer-like pathology. J Nutr Health Aging. 2006;10(4):247–54.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Lu J, Zheng YL, Wu DM, Sun DX, Shan Q, Fan SH. Trace amounts of copper induce neurotoxicity in the cholesterol-fed mice through apoptosis. FEBS Lett. 2006;580(28–29):6730–40. doi:10.1016/j.febslet.2006.10.072.

    Article  CAS  PubMed  Google Scholar 

  35. Arnal N, Castillo O, de Alaniz MJ, Marra CA. Effects of copper and/or cholesterol overload on mitochondrial function in a rat model of incipient neurodegeneration. Int J Alzheimers Dis. 2013;2013:645379. doi:10.1155/2013/645379.

    PubMed Central  PubMed  Google Scholar 

  36. Arnal N, Morel GR, de Alaniz MJ, Castillo O, Marra CA. Role of copper and cholesterol association in the neurodegenerative process. Int J Alzheimers Dis. 2013;2013:414817. doi:10.1155/2013/414817.

    PubMed Central  PubMed  Google Scholar 

  37. Squitti R, Simonelli I, Ventriglia M, Siotto M, Pasqualetti P, Rembach A, et al. Meta-analysis of serum non-ceruloplasmin copper in Alzheimer’s disease. J Alzheimers Dis: JAD. 2014;38(4):809–22. doi:10.3233/JAD-131247. This article presents comprehensive data about the concentrations of copper fractions in serum of Alzheimer’s disease and healthy controls.

    CAS  PubMed  Google Scholar 

  38. Bandmann O, Weiss KH, Kaler SG. Wilson’s disease and other neurological copper disorders. Lancet Neurol. 2015;14(1):103–13. doi:10.1016/S1474-4422(14)70190-5. This review updates recent evidence of copper involvement in neurological disorders.

    Article  CAS  PubMed  Google Scholar 

  39. Bucossi S, Polimanti R, Ventriglia M, Mariani S, Siotto M, Ursini F, et al. Intronic rs2147363 variant in ATP7B transcription factor-binding site associated with Alzheimer’s disease. J Alzheimers Dis: JAD. 2013;37(2):453–9. doi:10.3233/JAD-130431.

    CAS  PubMed  Google Scholar 

  40. Bucossi S, Polimanti R, Mariani S, Ventriglia M, Bonvicini C, Migliore S, et al. Association of K832R and R952K SNPs of Wilson’s disease gene with Alzheimer’s disease. J Alzheimers Dis. 2012;29(4):913–9. doi:10.3233/JAD-2012-111997.

    CAS  PubMed  Google Scholar 

  41. Squitti R, Polimanti R, Bucossi S, Ventriglia M, Mariani S, Manfellotto D, et al. Linkage disequilibrium and haplotype analysis of the ATP7B gene in Alzheimer’s disease. Rejuvenation Res. 2013;16(1):3–10. doi:10.1089/rej.2012.1357. This article provides data about ATP7B genetic association with Alzheimer’s disease.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Liu HP, Lin WY, Wang WF, Tsai CH, Wu WC, Chiou MT, et al. Genetic variability in copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with Alzheimer’s disease in a Chinese population. J Biol Regul Homeost Agents. 2013;27(2):319–27.

    CAS  PubMed  Google Scholar 

  43. Squitti R, Lupoi D, Pasqualetti P, Dal Forno G, Vernieri F, Chiovenda P, et al. Elevation of serum copper levels in Alzheimer’s disease. Neurology. 2002;59(8):1153–61.

    Article  CAS  PubMed  Google Scholar 

  44. Squitti R, Pasqualetti P, Cassetta E, Dal Forno G, Cesaretti S, Pedace F, et al. Elevation of serum copper levels discriminates Alzheimer’s disease from vascular dementia. Neurology. 2003;60(12):2013–4.

    Article  CAS  PubMed  Google Scholar 

  45. Squitti R, Bressi F, Pasqualetti P, Bonomini C, Ghidoni R, Binetti G, et al. Longitudinal prognostic value of serum “free” copper in patients with Alzheimer disease. Neurology. 2009;72(1):50–5. doi:10.1212/01.wnl.0000338568.28960.3f.

    Article  CAS  PubMed  Google Scholar 

  46. Squitti R, Ghidoni R, Scrascia F, Benussi L, Panetta V, Pasqualetti P, et al. Free copper distinguishes mild cognitive impairment subjects from healthy elderly individuals. J Alzheimers Dis: JAD. 2011;23(2):239–48. doi:10.3233/JAD-2010-101098.

    CAS  PubMed  Google Scholar 

  47. Squitti R, Pasqualetti P, Polimanti R, Salustri C, Moffa F, Cassetta E, et al. Metal-score as a potential non-invasive diagnostic test for Alzheimer’s disease. Curr Alzheimers Res. 2013;10(2):191–8.

    Article  CAS  Google Scholar 

  48. Squitti R, Ghidoni R, Siotto M, Ventriglia M, Benussi L, Paterlini A, et al. Value of serum non-ceruloplasmin copper for prediction of MCI conversion to ad. Ann Neurol. 2014;75(4):574–80. doi:10.1002/ana.24136. This article presents data about the predictive value of Non-ceruloplasmin copper in the rate of conversion to full AD in a cohort Mild Cognitive Impairment subjects followed up for 6 years.

    Article  CAS  PubMed  Google Scholar 

  49. Squitti R, Polimanti R. Copper hypothesis in the missing hereditability of sporadic Alzheimer’s disease: ATP7B gene as potential harbor of rare variants. J Alzheimers Dis. 2012;29(3):493–501. doi:10.3233/JAD-2011-111991. This review discusses ATP7B allele variants association with Alzheimer’s disease which can account for some ‘missing’ heritability of the disease.

    CAS  PubMed  Google Scholar 

  50. Bucossi S, Ventriglia M, Panetta V, Salustri C, Pasqualetti P, Mariani S, et al. Copper in Alzheimer’s disease: a meta-analysis of serum, plasma and cerebrospinal studies. J J Alzheimers Dis. 2011;24(1):175–85. doi:10.3233/JAD-2010-101473. Corrected and republished in: J Alzheimers Dis. 2012;30(4):981–4.

    CAS  Google Scholar 

  51. Schrag M, Mueller C, Oyoyo U, Smith MA, Kirsch WM. Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol. 2011;94(3):296–306. doi:10.1016/j.pneurobio.2011.05.001.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Schrag M, Mueller C, Zabel M, Crofton A, Kirsch WM, Ghribi O, et al. Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Neurobiol Dis. 2013;59:100–10. doi:10.1016/j.nbd.2013.07.005.

    Article  CAS  PubMed  Google Scholar 

  53. James SA, Volitakis I, Adlard PA, Duce JA, Masters CL, Cherny RA, et al. Elevated labile Cu is associated with oxidative pathology in Alzheimer disease. Free Radic Biol Med. 2012;52(2):298–302. doi:10.1016/j.freeradbiomed.2011.10.446. This article provides data of copper distribution in brain samples of Alzheimer’s disease.

    Article  CAS  PubMed  Google Scholar 

  54. Salustri C, Barbati G, Ghidoni R, Quintiliani L, Ciappina S, Binetti G, et al. Is cognitive function linked to serum free copper levels? A cohort study in a normal population. Clin Neurophysiol: Off J Int Fed Clin Neurophysiol. 2010;121(4):502–7. doi:10.1016/j.clinph.2009.11.090.

    Article  CAS  Google Scholar 

  55. Scheinberg IH, Sternlieb I. Wilson disease and idiopathic copper toxicosis. Am J Clin Nutr. 1996;63(5):842S–5.

    CAS  PubMed  Google Scholar 

  56. Ala A, Borjigin J, Rochwarger A, Schilsky M. Wilson disease in septuagenarian siblings: raising the bar for diagnosis. Hepatology. 2005;41(3):668–70. doi:10.1002/hep.20601.

    Article  PubMed  Google Scholar 

  57. Wenisch E, De Tassigny A, Trocello JM, Beretti J, Girardot-Tinant N, Woimant F. Cognitive profile in Wilson’s disease: a case series of 31 patients. Rev Neurol. 2013;169(12):944–9. doi:10.1016/j.neurol.2013.06.002.

    Article  CAS  PubMed  Google Scholar 

  58. Yu J, Luo X, Xu H, Ma Q, Yuan J, Li X et al. Identification of the key molecules involved in chronic copper exposure-aggravated memory impairment in transgenic mice of Alzheimer’s disease using proteomic analysis. J Alzheimers Dis. 2014.

  59. Kivipelto M, Mangialasche F. Alzheimer disease: to what extent can Alzheimer disease be prevented? Nat Rev Neurol. 2014;10(10):552–3.

    Article  CAS  PubMed  Google Scholar 

  60. Exalto LG, Quesenberry CP, Barnes D, Kivipelto M, Biessels GJ, Whitmer RA. Midlife risk score for the prediction of dementia four decades later. Alzheimers Dement. 2014;10(5):562–70.

    Article  PubMed  Google Scholar 

  61. Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10(9):819–28. doi:10.1016/S1474-4422(11)70072-2.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Solomon A, Mangialasche F, Richard E, Andrieu S, Bennett DA, Breteler M, et al. Advances in the prevention of Alzheimer’s disease and dementia. J Intern Med. 2014;275(3):229–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Kivipelto M, Solomon A, Ahtiluoto S, Ngandu T, Lehtisalo J, Antikainen R, et al. The finnish geriatric intervention study to prevent cognitive impairment and disability (FINGER): study design and progress. Alzheimers Dement: J Alzheimers Assoc. 2013;9(6):657–65.

    Article  Google Scholar 

  64. Brewer GJ, Yuzbasiyan-Gurkan V, Dick R, Wang Y, Johnson V. Does a vegetarian diet control Wilson’s disease? J Am Coll Nutr. 1993;12(5):527–30.

    Article  CAS  PubMed  Google Scholar 

  65. Weiss KH, Stremmel W. Clinical considerations for an effective medical therapy in Wilson’s disease. Ann N Y Acad Sci. 2014;1315:81–5. doi:10.1111/nyas.12437.

    Article  CAS  PubMed  Google Scholar 

  66. Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J, et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2008;7(9):779–86. doi:10.1016/S1474-4422(08)70167-4. This article presents data about a phase II clinical trial with the modulating copper agent PBT2 in Alzheimer’s disease.

    Article  CAS  PubMed  Google Scholar 

  67. Brewer GJ. Copper excess, zinc deficiency, and cognition loss in Alzheimer’s disease. Biofactors. 2012;38(2):107–13. doi:10.1002/biof.1005. This article presents data about a phase II clinical trial with zinc therapy in Alzheimer’s disease.

    Article  CAS  PubMed  Google Scholar 

  68. Brewer GJ, Askari F, Dick RB, Sitterly J, Fink JK, Carlson M, et al. Treatment of Wilson’s disease with tetrathiomolybdate: V. Control of free copper by tetrathiomolybdate and a comparison with trientine. Transl Res: J Lab Clin Med. 2009;154(2):70–7. doi:10.1016/j.trsl.2009.05.002.

    Article  CAS  Google Scholar 

  69. Squitti R. Copper subtype of Alzheimer’s disease (AD): meta-analyses, genetic studies and predictive value of non-ceruloplasmim copper in mild cognitive impairment conversion to full AD. J Trace Elem Med Biol: Organ Soc Mineral Trace Elem. 2014;28(4):482–5.

    Article  CAS  Google Scholar 

  70. Bica L, Liddell JR, Donnelly PS, Duncan C, Caragounis A, Volitakis I, et al. Neuroprotective copper bis(thiosemicarbazonato) complexes promote neurite elongation. PLoS One. 2014;9(2):e90070.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Pal A, Prasad R. An overview of various mammalian models to study chronic copper intoxication associated Alzheimer’s disease like pathology. Biometals. 2014;12:2014. doi:10.1007/s10534-014-9799-3.

    Google Scholar 

  72. WHO. Copper. Trace elements in human nutrition and health. Geneva: World Health Organization; 1996. p. 123–43.

    Google Scholar 

Download references

Acknowledgments

Authors thank the National Research Council, Aging Program 2012–2014, “A low-copper diet as a preventive strategy for cognitive disability in Aging”; MIUR Cod. 1182/Ric/V o prot. 2010SH7H3F “Functional connectivity and neuroplasticity in physiological and pathological aging” (ConnAge); Fondazione Italiana Sclerosi Multipla (FISM), Prot. N. 13/15/F14 Fatigue Relief in Multiple Sclerosis by a Customized Neuromodulation treatment at Home [FaReMuS CuNeH]; Ministry of Health Cod. GR-2008-1138642 promoting recovery from stroke: individually enriched therapeutic intervention in acute phase [ProSIA] Ricerca Corrente, Italian Ministry of Health; Canox4drug SpA 2013–2016 “Non-Ceruloplasmin copper in Alzheimer’s disease” (Prot. 30/2013).

Compliance with Ethics Guidelines

Conflict of Interest

Rosanna Squitti declares patents (PCT/EP2012/072063) royalties given to Canox4drug and has received honoraria from Canox4drug for service as a consultant.

Franca Tecchio declares that she has no conflict of interest.

Mariacarla Ventriglia declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosanna Squitti.

Additional information

This article is part of the Topical Collection on Neurological Disease and Cognitive Function

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Squitti, R., Tecchio, F. & Ventriglia, M. The Role of Copper in Human Diet and Risk of Dementia. Curr Nutr Rep 4, 114–125 (2015). https://doi.org/10.1007/s13668-015-0121-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-015-0121-y

Keywords

Navigation