Skip to main content
Log in

Meat and Colorectal Cancer: Associations and Issues

  • Cancer (MF Leitzmann, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Epidemiologic studies indicate an association of modest strength between consumption of red meat and colorectal cancer risk. Candidate compounds in red meat implicated in this association include those derived from processing (heterocyclic aromatic amines [HAAs], polycyclic aromatic hydrocarbons [PAHs], and N-nitroso compounds [NOCs]), as well as heme. Questions regarding HAAs and PAHs as etiological agents include their low concentration in meat relative to high concentrations in experimental studies and differing colorectal associations between different HAA and PAH food sources. The role of added nitrite and nitrate meat preservatives in NOC formation, as well as the potential inhibitory effect of calcium on heme-stimulated NOC formation remain uncertain and warrant further investigation. Improvements in dietary exposure assessment methods for the exogenous compounds and a greater understanding of gene–diet interactions will be necessary to clarify the role of meat mutagens and to more firmly establish the relationship between meat consumption and colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. International Agency for Research on Cancer. GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx?cancer=colorectal. Accessed 11 Dec 2014.

  2. World Cancer Research Fund/American Institute for Cancer Research. Food, nutrition, physical activity and the prevention of cancer: a global perspective. Washington, DC: American Institute for Cancer Research; 2007.

    Google Scholar 

  3. World Cancer Research Fund/American Institute for Cancer Research. Continuous Update Project Report. Food, Nutrition, Physical Activity, and the Prevention of Colorectal Cancer. 2011.

  4. Pericleous M, Mandair D, Caplin ME. Diet and supplements and their impact on colorectal cancer. J Gastrointest Oncol. 2013;4(4):409–23. doi:10.3978/j.issn. 2078-6891.2013.003.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Oostindjer M, Alexander J, Amdam GV, Andersen G, Bryan NS, Chen D, et al. The role of red and processed meat in colorectal cancer development: a perspective. Meat Sci. 2014;97(4):583–96. doi:10.1016/j.meatsci.2014.02.011. This perspective paper is the result of a recent workshop where several experts sought consensus regarding red meat and health. It details many of the concerns regarding current data on red and processed meat and colorectal cancer, and offers specific future directions.

    Article  PubMed  Google Scholar 

  6. Sugimura T, Wakabayashi K, Nakagama H, Nagao M. Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci. 2004;95(4):290–9.

    Article  CAS  PubMed  Google Scholar 

  7. International Agency for Research on Cancer. Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. IARC Monogr Eval Carcinog Risk Chem Hum. Lyon: International Agency for Research on Cancer; 1993.

    Google Scholar 

  8. Corpet DE. Red meat and colon cancer: should we become vegetarians, or can we make meat safer? Meat Sci. 2011;89(3):310–6. doi:10.1016/j.meatsci.2011.04.009.

    Article  CAS  PubMed  Google Scholar 

  9. Alexander DD, Cushing CA. Red meat and colorectal cancer: a critical summary of prospective epidemiologic studies. Obes Rev. 2011;12(5):e472–93. doi:10.1111/j.1467-789X.2010.00785.x.

    Article  CAS  PubMed  Google Scholar 

  10. Lund EK, Belshaw NJ, Elliott GO, Johnson IT. Recent advances in understanding the role of diet and obesity in the development of colorectal cancer. Proc Nutr Soc. 2011;70(2):194–204. doi:10.1017/s0029665111000073.

    Article  CAS  PubMed  Google Scholar 

  11. Phillips DH. Polycyclic aromatic hydrocarbons in the diet. Mutat Res. 1999;443(1–2):139–47.

    Article  CAS  PubMed  Google Scholar 

  12. International Agency for Research on Cancer. Some Non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risk Chem Hum. Lyon: International Agency for Research on Cancer; 2010.

    Google Scholar 

  13. McAfee AJ, McSorley EM, Cuskelly GJ, Moss BW, Wallace JM, Bonham MP, et al. Red meat consumption: an overview of the risks and benefits. Meat Sci. 2010;84(1):1–13. doi:10.1016/j.meatsci.2009.08.029.

    Article  CAS  PubMed  Google Scholar 

  14. Abid Z, Cross AJ, Sinha R. Meat, dairy, and cancer. Am J Clin Nutr. 2014;100(Supplement 1):386S–93. doi:10.3945/ajcn.113.071597. This is a recent review of cohort studies investigating cancer associations of meat and dairy, a key source of calcium. Colorectal cancer is emphasized, but summaries are provided regarding other sites. Issues regarding HAAs, PAHs, NOCs, and heme iron are highlighted.

    Article  CAS  PubMed  Google Scholar 

  15. Kazerouni N, Sinha R, Hsu CH, Greenberg A, Rothman N. Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem Toxicol. 2001;39(5):423–36.

    Article  CAS  PubMed  Google Scholar 

  16. U.S. Environmental Protection Agency. Nitrates and nitrites: TEACH chemical summary. 2007.

  17. International Agency for Research on Cancer. Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC Monogr Eval Carcinog Risk Chem Hum. Lyon: International Agency for Research on Cancer; 2010.

    Google Scholar 

  18. Cross AJ, Pollock JR, Bingham SA. Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res. 2003;63(10):2358–60.

    CAS  PubMed  Google Scholar 

  19. Soyars KE, Fischer JG. Iron supplementation does not affect cell proliferation or aberrant crypt foci development in the colon of sprague-dawley rats. J Nutr. 1998;128(4):764–70.

    CAS  PubMed  Google Scholar 

  20. Sesink AL, Termont DS, Kleibeuker JH, Van Der Meer R. Red meat and colon cancer: dietary haem, but not fat, has cytotoxic and hyperproliferative effects on rat colonic epithelium. Carcinogenesis. 2000;21(10):1909–15.

    Article  CAS  PubMed  Google Scholar 

  21. Khil J, Gallaher DD. Beef tallow increases apoptosis and decreases aberrant crypt foci formation relative to soybean oil in rat colon. Nutr Cancer. 2004;50(1):55–62. doi:10.1207/s15327914nc5001_8.

    Article  PubMed  Google Scholar 

  22. Windey K, De Preter V, Verbeke K. Relevance of protein fermentation to gut health. Mol Nutr Food Res. 2012;56(1):184–96. doi:10.1002/mnfr.201100542.

    Article  CAS  PubMed  Google Scholar 

  23. Qiao L, Feng Y. Intakes of heme iron and zinc and colorectal cancer incidence: a meta-analysis of prospective studies. Cancer Causes Control. 2013;24(6):1175–83. doi:10.1007/s10552-013-0197-x.

    Article  PubMed  Google Scholar 

  24. Fonseca-Nunes A, Jakszyn P, Agudo A. Iron and cancer risk–a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomarkers Prev. 2014;23(1):12–31. doi:10.1158/1055-9965.epi-13-0733.

    Article  CAS  PubMed  Google Scholar 

  25. Cross AJ, Harnly JM, Ferrucci LM, Risch A, Mayne ST, Sinha R. Developing a heme iron database for meats according to meat type, cooking method and doneness level. Food Nutr Sci. 2012;3(7):905–13. doi:10.4236/fns.2012.37120. This is a useful reference that provides an extensive database of the heme content of different types of meats, cooked using different methods.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gilsing AM, Fransen F, de Kok TM, Goldbohm AR, Schouten LJ, de Bruine AP, et al. Dietary heme iron and the risk of colorectal cancer with specific mutations in KRAS and APC. Carcinogenesis. 2013;34(12):2757–66. doi:10.1093/carcin/bgt290.

    Article  CAS  PubMed  Google Scholar 

  27. Saffhill R, Margison GP, O'Connor PJ. Mechanisms of carcinogenesis induced by alkylating agents. Biochim Biophys Acta. 1985;823(2):111–45.

    CAS  PubMed  Google Scholar 

  28. Pierce F, Tache S, Petit CR, van der Meer R, Corpet DE. Meat and cancer: haemoglobin and haemin in a low-calcium diet promote colorectal carcinogenesis at the aberrant crypt stage in rats. Carcinogenesis. 2003;24(10):1683–90.

    Article  Google Scholar 

  29. Pierre F, Freeman A, Tache S, Van der Meer R, Corpet DE. Beef meat and blood sausage promote the formation of azoxymethane-induced mucin-depleted foci and aberrant crypt foci in rat colons. J Nutr. 2004;134:2711–6.

    CAS  PubMed  Google Scholar 

  30. Femia AP, Giannini A, Fazi M, Tarquini E, Salvadori M, Roncucci L, et al. Identification of mucin depleted foci in the human colon. Cancer Prev Res (Phila). 2008;1(7):562–7. doi:10.1158/1940-6207.capr-08-0125.

    Article  Google Scholar 

  31. Tappel A. Heme of consumed red meat can act as a catalyst of oxidative damage and could initiate colon, breast and prostate cancers, heart disease and other diseases. Med Hypotheses. 2007;68(3):562–4. doi:10.1016/j.mehy.2006.08.025.

    Article  CAS  PubMed  Google Scholar 

  32. Ijssennagger N, Rijnierse A, de Wit NJ, Boekschoten MV, Dekker J, Schonewille A, et al. Dietary heme induces acute oxidative stress, but delayed cytotoxicity and compensatory hyperproliferation in mouse colon. Carcinogenesis. 2013;34(7):1628–35. doi:10.1093/carcin/bgt084.

    Article  CAS  PubMed  Google Scholar 

  33. Babbs CF. Free radicals and the etiology of colon cancer. Free Radic Biol Med. 1990;8(2):191–200.

    Article  CAS  PubMed  Google Scholar 

  34. Weinberg ED. Association of iron with colorectal cancer. Biometals. 1994;7(3):211–6.

    Article  CAS  PubMed  Google Scholar 

  35. Buescher MI, Gallaher DD. Wheat color (class), not refining, influences colon cancer risk in rats. Nutr Cancer. 2014;66(5):849–56. doi:10.1080/01635581.2014.904909.

    Article  PubMed  Google Scholar 

  36. Shuker DE, Margison GP. Nitrosated glycine derivatives as a potential source of O6-methylguanine in DNA. Cancer Res. 1997;57(3):366–9.

    CAS  PubMed  Google Scholar 

  37. Jackson PE, Cooper DP, Meyer TA, Wood M, Povey AC, Margison GP. Formation and persistence of O(6)-methylguanine in the mouse colon following treatment with 1,2-dimethylhydrazine as measured by an O(6)-alkylguanine-DNA alkyltransferase inactivation assay. Toxicol Lett. 2000;115(3):205–12.

    Article  CAS  PubMed  Google Scholar 

  38. Van Hecke T, Vanden Bussche J, Vanhaecke L, Vossen E, Van Camp J, De Smet S. Nitrite curing of chicken, pork, and beef inhibits oxidation but does not affect N-nitroso compound (NOC)-specific DNA adduct formation during in vitro digestion. J Agric Food Chem. 2014;62(8):1980–8. doi:10.1021/jf4057583.

    Article  PubMed  Google Scholar 

  39. Newmark HL, Yang K, Lipkin M, Kopelovich L, Liu Y, Fan K, et al. A Western-style diet induces benign and malignant neoplasms in the colon of normal C57Bl/6 mice. Carcinogenesis. 2001;22(11):1871–5.

    Article  CAS  PubMed  Google Scholar 

  40. Winter J, Young GP, Hu Y, Gratz SW, Conlon MA, Le Leu RK. Accumulation of promutagenic DNA adducts in the mouse distal colon after consumption of heme does not induce colonic neoplasms in the western diet model of spontaneous colorectal cancer. Mol Nutr Food Res. 2014;58(3):550–8. doi:10.1002/mnfr.201300430. This article describes an animal study in which the effect of heme on tumor development in mice was examined.

    Article  CAS  PubMed  Google Scholar 

  41. Santarelli RL, Naud N, Tache S, Gueraud F, Vendeuvre JL, Zhou L, et al. Calcium inhibits promotion by hot dog of 1,2-dimethylhydrazine-induced mucin-depleted foci in rat colon. Int J Cancer. 2013;133(11):2533–41. doi:10.1002/ijc.28286.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Pierre FH, Martin OC, Santarelli RL, Taché S, Naud N, Guéraud F, et al. Calcium and α-tocopherol suppress cured-meat promotion of chemically induced colon carcinogenesis in rats and reduce associated biomarkers in human volunteers. Am J Clin Nutr. 2013;98(5):1255–62. doi:10.3945/ajcn.113.061069.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Sesink AL, Termont DS, Kleibeuker JH, Van der Meer R. Red meat and colon cancer: dietary haem-induced colonic cytotoxicity and epithelial hyperproliferation are inhibited by calcium. Carcinogenesis. 2001;22(10):1653–9.

    Article  CAS  PubMed  Google Scholar 

  44. Kuhnle GG, Story GW, Reda T, Mani AR, Moore KP, Lunn JC, et al. Diet-induced endogenous formation of nitroso compounds in the GI tract. Free Radic Biol Med. 2007;43(7):1040–7. doi:10.1016/j.freeradbiomed.2007.03.011.

    Article  CAS  PubMed  Google Scholar 

  45. Lunn JC, Kuhnle G, Mai V, Frankenfeld C, Shuker DE, Glen RC, et al. The effect of haem in red and processed meat on the endogenous formation of N-nitroso compounds in the upper gastrointestinal tract. Carcinogenesis. 2007;28(3):685–90. doi:10.1093/carcin/bgl192.

    Article  CAS  PubMed  Google Scholar 

  46. Ferguson LR. Meat and cancer. Meat Sci. 2010;84(2):308–13. doi:10.1016/j.meatsci.2009.06.032.

    Article  CAS  PubMed  Google Scholar 

  47. Qasim A, O'Morain C. Primary prevention of colorectal cancer: are we closer to reality? Eur J Gastroenterol Hepatol. 2010;22(1):9–17. doi:10.1097/MEG.0b013e328330d0d6.

    Article  PubMed  Google Scholar 

  48. Vargas AJ, Thompson PA. Diet and nutrient factors in colorectal cancer risk. Nutr Clin Pract. 2012;27(5):613–23. doi:10.1177/0884533612454885.

    Article  PubMed  Google Scholar 

  49. Kim E, Coelho D, Blachier F. Review of the association between meat consumption and risk of colorectal cancer. Nutr Res. 2013;33(12):983–94. doi:10.1016/j.nutres.2013.07.018.

    Article  CAS  PubMed  Google Scholar 

  50. Pham NM, Mizoue T, Tanaka K, Tsuji I, Tamakoshi A, Matsuo K, et al. Meat consumption and colorectal cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol. 2014;44(7):641–50. doi:10.1093/jjco/hyu061.

    Article  PubMed  Google Scholar 

  51. Randi G, Edefonti V, Ferraroni M, La Vecchia C, Decarli A. Dietary patterns and the risk of colorectal cancer and adenomas. Nutr Rev. 2010;68(7):389–408. doi:10.1111/j.1753-4887.2010.00299.x.

    Article  PubMed  Google Scholar 

  52. Moore HG. Colorectal cancer: what should patients and families be told to lower the risk of colorectal cancer? Surg Oncol Clin N Am. 2010;19(4):693–710. doi:10.1016/j.soc.2010.06.002.

    Article  PubMed  Google Scholar 

  53. Dragsted LO. Biomarkers of meat intake and the application of nutrigenomics. Meat Sci. 2010;84(2):301–7. doi:10.1016/j.meatsci.2009.08.028.

    Article  CAS  PubMed  Google Scholar 

  54. Poulsen MW, Hedegaard RV, Andersen JM, de Courten B, Bugel S, Nielsen J, et al. Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol. 2013;60:10–37. doi:10.1016/j.fct.2013.06.052.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Sabrina P. Trudo and Daniel D. Gallaher declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina P. Trudo.

Additional information

This article is part of the Topical Collection on Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trudo, S.P., Gallaher, D.D. Meat and Colorectal Cancer: Associations and Issues. Curr Nutr Rep 4, 33–39 (2015). https://doi.org/10.1007/s13668-014-0117-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-014-0117-z

Keywords

Navigation