Skip to main content
Log in

Gene-Diet Interactions and Their Impact on Colorectal Cancer Risk

  • Cancer (MF Leitzmann, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

A number of studies have evaluated the role of gene-diet interaction in the etiology of colorectal cancer (CRC). Historically, these studies focused on established dietary risk factors and genes involved in their metabolism. However, results from these candidate gene studies were inconsistent, possibly due to multiple testing and publication bias. In recent years, genome-wide association studies have identified a number of CRC susceptibility loci, and subsequent meta-analyses have observed limited evidence that diet may modify the risk associated with these susceptibility loci. Statistical techniques have been recently developed to evaluate the presence of interaction across the entire genome; results from these genome-wide studies have demonstrated limited evidence of interaction and have failed to replicate results from candidate gene studies and those using established susceptibility loci. However, larger sample sizes are likely needed to elucidate modest or weak interaction in genome-wide studies of gene-diet interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    Article  PubMed  Google Scholar 

  2. Lee JE, Willett WC, Fuchs CS, Smith-Warner SA, Wu K, Ma J, et al. Folate intake and risk of colorectal cancer and adenoma: modification by time. Am J Clin Nutr. 2011;93(4):817–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Fedirko V, Tramacere I, Bagnardi V, Rota M, Scotti L, Islami F, et al. Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol. 2011;22(9):1958–72.

    Article  CAS  PubMed  Google Scholar 

  4. Ma Y, Zhang P, Wang F, Yang J, Liu Z, Qin H. Association between vitamin D and risk of colorectal cancer: a systematic review of prospective studies. J Clin Oncol. 2011;29(28):3775–82.

    Article  CAS  PubMed  Google Scholar 

  5. Keum N, Aune D, Greenwood DC, Ju W, Giovannucci EL. Calcium intake and colorectal cancer risk: dose-response meta-analysis of prospective observational studies. Int J Cancer. 2014;135(8):1940–8.

    Article  CAS  PubMed  Google Scholar 

  6. Aune D, Chan DS, Lau R, Vieira R, Greenwood DC, Kampman E, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2011;343:d6617.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Aune D, Lau R, Chan DS, Vieira R, Greenwood DC, Kampman E, et al. Nonlinear reduction in risk for colorectal cancer by fruit and vegetable intake based on meta-analysis of prospective studies. Gastroenterology. 2011;141(1):106–18.

    Article  PubMed  Google Scholar 

  8. Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, et al. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS One. 2011;6(6):e20456.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Giovannucci E. Epidemiologic studies of folate and colorectal neoplasia: a review. J Nutr. 2002;132(8 Suppl):2350S–5.

    CAS  PubMed  Google Scholar 

  10. Kennedy DA, Stern SJ, Matok I, Moretti ME, Sarkar M, Adams-Webber T, et al. Folate intake, MTHFR polymorphisms, and the risk of colorectal cancer: a systematic review and meta-analysis. J Cancer Epidemiol. 2012;2012:952508.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Taioli E, Garza MA, Ahn YO, Bishop DT, Bost J, Budai B, et al. Meta- and pooled analyses of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and colorectal cancer: a HuGE-GSEC review. Am J Epidemiol. 2009;170(10):1207–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cole BF, Baron JA, Sandler RS, Haile RW, Ahnen DJ, Bresalier RS, et al. Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. Jama. 2007;297(21):2351–9.

    Article  CAS  PubMed  Google Scholar 

  13. Ulrich CM. Folate and cancer prevention--where to next? Counterpoint. Cancer Epidemiol Biomarkers Prev. 2008;17(9):2226–30.

    Article  PubMed  Google Scholar 

  14. Vollset SE, Clarke R, Lewington S, Ebbing M, Halsey J, Lonn E, et al. Effects of folic acid supplementation on overall and site-specific cancer incidence during the randomised trials: meta-analyses of data on 50,000 individuals. Lancet. 2013;381(9871):1029–36.

    Article  CAS  PubMed  Google Scholar 

  15. Ma J, Stampfer MJ, Giovannucci E, Artigas C, Hunter DJ, Fuchs C, et al. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res. 1997;57(6):1098–102.

    CAS  PubMed  Google Scholar 

  16. Ashmore JH, Lesko SM, Muscat JE, Gallagher CJ, Berg AS, Miller PE, et al. Association of dietary and supplemental folate intake and polymorphisms in three FOCM pathway genes with colorectal cancer in a population-based case-control study. Genes Chromosomes Cancer. 2013;52(10):945–53.

    Article  CAS  PubMed  Google Scholar 

  17. Chen J, Giovannucci E, Kelsey K, Rimm EB, Stampfer MJ, Colditz GA, et al. A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer. Cancer Res. 1996;56(21):4862–4.

    CAS  PubMed  Google Scholar 

  18. Lee JE, Wei EK, Fuchs CS, Hunter DJ, Lee IM, Selhub J, et al. Plasma folate, methylenetetrahydrofolate reductase (MTHFR), and colorectal cancer risk in three large nested case-control studies. Cancer Causes Control. 2012;23(4):537–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Chen J, Giovannucci E, Hankinson SE, Ma J, Willett WC, Spiegelman D, et al. A prospective study of methylenetetrahydrofolate reductase and methionine synthase gene polymorphisms, and risk of colorectal adenoma. Carcinogenesis. 1998;19(12):2129–32.

    Article  CAS  PubMed  Google Scholar 

  20. Giovannucci E, Chen J, Smith-Warner SA, Rimm EB, Fuchs CS, Palomeque C, et al. Methylenetetrahydrofolate reductase, alcohol dehydrogenase, diet, and risk of colorectal adenomas. Cancer Epidemiol Biomarkers Prev. 2003;12(10):970–9.

    CAS  PubMed  Google Scholar 

  21. Han SS, Sue LY, Berndt SI, Selhub J, Burdette LA, Rosenberg PS, et al. Associations between genes in the one-carbon metabolism pathway and advanced colorectal adenoma risk in individuals with low folate intake. Cancer Epidemiol Biomarkers Prev. 2012;21(3):417–27.

    Article  CAS  PubMed  Google Scholar 

  22. Curtin K, Bigler J, Slattery ML, Caan B, Potter JD, Ulrich CM. MTHFR C677T and A1298C polymorphisms: diet, estrogen, and risk of colon cancer. Cancer Epidemiol Biomarkers Prev. 2004;13(2):285–92.

    Article  CAS  PubMed  Google Scholar 

  23. Figueiredo JC, Levine AJ, Grau MV, Midttun O, Ueland PM, Ahnen DJ, et al. Vitamins B2, B6, and B12 and risk of new colorectal adenomas in a randomized trial of aspirin use and folic acid supplementation. Cancer Epidemiol Biomarkers Prev. 2008;17(8):2136–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Figueiredo JC, Levine AJ, Lee WH, Conti DV, Poynter JN, Campbell PT, et al. Genes involved with folate uptake and distribution and their association with colorectal cancer risk. Cancer Causes Control. 2010;21(4):597–608.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Jung AY, Poole EM, Bigler J, Whitton J, Potter JD, Ulrich CM. DNA methyltransferase and alcohol dehydrogenase: gene-nutrient interactions in relation to risk of colorectal polyps. Cancer Epidemiol Biomarkers Prev. 2008;17(2):330–8.

    Article  CAS  PubMed  Google Scholar 

  26. Koushik A, Kraft P, Fuchs CS, Hankinson SE, Willett WC, Giovannucci EL, et al. Nonsynonymous polymorphisms in genes in the one-carbon metabolism pathway and associations with colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2006;15(12):2408–17.

    Article  CAS  PubMed  Google Scholar 

  27. Liu AY, Scherer D, Poole E, Potter JD, Curtin K, Makar K, et al. Gene-diet-interactions in folate-mediated one-carbon metabolism modify colon cancer risk. Mol Nutr Food Res. 2013;57(4):721–34.

    Article  CAS  PubMed  Google Scholar 

  28. Ma J, Stampfer MJ, Christensen B, Giovannucci E, Hunter DJ, Chen J, et al. A polymorphism of the methionine synthase gene: association with plasma folate, vitamin B12, homocyst(e)ine, and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 1999;8(9):825–9.

    CAS  PubMed  Google Scholar 

  29. Morita M, Yin G, Yoshimitsu S, Ohnaka K, Toyomura K, Kono S, et al. Folate-related nutrients, genetic polymorphisms, and colorectal cancer risk: the fukuoka colorectal cancer study. Asian Pac J Cancer Prev. 2013;14(11):6249–56.

    Article  PubMed  Google Scholar 

  30. Slattery ML, Potter JD, Samowitz W, Schaffer D, Leppert M. Methylenetetrahydrofolate reductase, diet, and risk of colon cancer. Cancer Epidemiol Biomarkers Prev. 1999;8(6):513–8.

    CAS  PubMed  Google Scholar 

  31. Seitz HK, Maurer B, Stickel F. Alcohol consumption and cancer of the gastrointestinal tract. Dig Dis. 2005;23(3–4):297–303.

    Article  PubMed  Google Scholar 

  32. Volpato S, Pahor M, Ferrucci L, Simonsick EM, Guralnik JM, Kritchevsky SB, et al. Relationship of alcohol intake with inflammatory markers and plasminogen activator inhibitor-1 in well-functioning older adults: the health, aging, and body composition study. Circulation. 2004;109(5):607–12.

    Article  CAS  PubMed  Google Scholar 

  33. Levine AJ, Siegmund KD, Ervin CM, Diep A, Lee ER, Frankl HD, et al. The methylenetetrahydrofolate reductase 677C–>T polymorphism and distal colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev. 2000;9(7):657–63.

    CAS  PubMed  Google Scholar 

  34. Ulrich CM, Kampman E, Bigler J, Schwartz SM, Chen C, Bostick R, et al. Colorectal adenomas and the C677T MTHFR polymorphism: evidence for gene-environment interaction? Cancer Epidemiol Biomarkers Prev. 1999;8(8):659–68.

    CAS  PubMed  Google Scholar 

  35. Ding W, Zhou DL, Jiang X, Lu LS. Methionine synthase A2756G polymorphism and risk of colorectal adenoma and cancer: evidence based on 27 studies. PLoS One. 2013;8(4):e60508.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Tiemersma EW, Wark PA, Ocke MC, Bunschoten A, Otten MH, Kok FJ, et al. Alcohol consumption, alcohol dehydrogenase 3 polymorphism, and colorectal adenomas. Cancer Epidemiol Biomarkers Prev. 2003;12(5):419–25.

    CAS  PubMed  Google Scholar 

  37. Chen J, Ma J, Stampfer MJ, Hines LM, Selhub J, Hunter DJ. Alcohol dehydrogenase 3 genotype is not predictive for risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2001;10(12):1303–4.

    CAS  PubMed  Google Scholar 

  38. Jokelainen K, Roine RP, Vaananen H, Farkkila M, Salaspuro M. In vitro acetaldehyde formation by human colonic bacteria. Gut. 1994;35(9):1271–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Vogel U, Christensen J, Dybdahl M, Friis S, Hansen RD, Wallin H, et al. Prospective study of interaction between alcohol, NSAID use and polymorphisms in genes involved in the inflammatory response in relation to risk of colorectal cancer. Mutat Res. 2007;624(1–2):88–100.

    Article  CAS  PubMed  Google Scholar 

  40. Loh YH, Mitrou PN, Bowman R, Wood A, Jeffery H, Luben RN, et al. MGMT Ile143Val polymorphism, dietary factors and the risk of breast, colorectal and prostate cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk study. DNA Repair (Amst). 2010;9(4):421–8.

    Article  CAS  Google Scholar 

  41. Tranah GJ, Giovannucci E, Ma J, Fuchs C, Hunter DJ. APC Asp1822Val and Gly2502Ser polymorphisms and risk of colorectal cancer and adenoma. Cancer Epidemiol Biomarkers Prev. 2005;14(4):863–70.

    Article  CAS  PubMed  Google Scholar 

  42. Jenab M, McKay J, Bueno-de-Mesquita HB, van Duijnhoven FJ, Ferrari P, Slimani N, et al. Vitamin D receptor and calcium sensing receptor polymorphisms and the risk of colorectal cancer in European populations. Cancer Epidemiol Biomarkers Prev. 2009;18(9):2485–91.

    Article  CAS  PubMed  Google Scholar 

  43. Poynter JN, Jacobs ET, Figueiredo JC, Lee WH, Conti DV, Campbell PT, et al. Genetic variation in the vitamin D receptor (VDR) and the vitamin D-binding protein (GC) and risk for colorectal cancer: results from the Colon Cancer Family Registry. Cancer Epidemiol Biomarkers Prev. 2010;19(2):525–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Slattery ML, Neuhausen SL, Hoffman M, Caan B, Curtin K, Ma KN, et al. Dietary calcium, vitamin D, VDR genotypes and colorectal cancer. Int J Cancer. 2004;111(5):750–6.

    Article  CAS  PubMed  Google Scholar 

  45. Boyapati SM, Bostick RM, McGlynn KA, Fina MF, Roufail WM, Geisinger KR, et al. Calcium, vitamin D, and risk for colorectal adenoma: dependency on vitamin D receptor BsmI polymorphism and nonsteroidal anti-inflammatory drug use? Cancer Epidemiol Biomarkers Prev. 2003;12(7):631–7.

    CAS  PubMed  Google Scholar 

  46. Ingles SA, Wang J, Coetzee GA, Lee ER, Frankl HD, Haile RW. Vitamin D receptor polymorphisms and risk of colorectal adenomas (United States). Cancer Causes Control. 2001;12(7):607–14.

    Article  CAS  PubMed  Google Scholar 

  47. Peters U, Hayes RB, Chatterjee N, Shao W, Schoen RE, Pinsky P, et al. Circulating vitamin D metabolites, polymorphism in vitamin D receptor, and colorectal adenoma risk. Cancer Epidemiol Biomarkers Prev. 2004;13(4):546–52.

    CAS  PubMed  Google Scholar 

  48. Peters U, McGlynn KA, Chatterjee N, Gunter E, Garcia-Closas M, Rothman N, et al. Vitamin D, calcium, and vitamin D receptor polymorphism in colorectal adenomas. Cancer Epidemiol Biomarkers Prev. 2001;10(12):1267–74.

    CAS  PubMed  Google Scholar 

  49. Hiraki LT, Joshi AD, Ng K, Fuchs CS, Ma J, Hazra A, et al. Joint effects of colorectal cancer susceptibility loci, circulating 25-hydroxyvitamin D and risk of colorectal cancer. PLoS One. 2014;9(3):e92212.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Dong LM, Ulrich CM, Hsu L, Duggan DJ, Benitez DS, White E, et al. Vitamin D related genes, CYP24A1 and CYP27B1, and colon cancer risk. Cancer Epidemiol Biomarkers Prev. 2009;18(9):2540–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Dong LM, Ulrich CM, Hsu L, Duggan DJ, Benitez DS, White E, et al. Genetic variation in calcium-sensing receptor and risk for colon cancer. Cancer Epidemiol Biomarkers Prev. 2008;17(10):2755–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Peters U, Chatterjee N, Yeager M, Chanock SJ, Schoen RE, McGlynn KA, et al. Association of genetic variants in the calcium-sensing receptor with risk of colorectal adenoma. Cancer Epidemiol Biomarkers Prev. 2004;13(12):2181–6.

    CAS  PubMed  Google Scholar 

  53. Zhu X, Liang J, Shrubsole MJ, Ness RM, Cai Q, Long J, et al. Calcium Intake and Ion Transporter Genetic Polymorphisms Interact in Human Colorectal Neoplasia Risk in a 2-Phase Study. J Nutr. 2014.

  54. Lipkin M, Reddy B, Newmark H, Lamprecht SA. Dietary factors in human colorectal cancer. Annu Rev Nutr. 1999;19:545–86.

    Article  CAS  PubMed  Google Scholar 

  55. Weickert MO, Pfeiffer AF. Metabolic effects of dietary fiber consumption and prevention of diabetes. J Nutr. 2008;138(3):439–42.

    CAS  PubMed  Google Scholar 

  56. Ajani UA, Ford ES, Mokdad AH. Dietary fiber and C-reactive protein: findings from national health and nutrition examination survey data. J Nutr. 2004;134(5):1181–5.

    CAS  PubMed  Google Scholar 

  57. Andersen V, Egeberg R, Tjonneland A, Vogel U. Interaction between interleukin-10 (IL-10) polymorphisms and dietary fibre in relation to risk of colorectal cancer in a Danish case-cohort study. BMC Cancer. 2012;12:183.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Slattery ML, Lundgreen A, Herrick JS, Caan BJ, Potter JD, Wolff RK. Diet and colorectal cancer: analysis of a candidate pathway using SNPS, haplotypes, and multi-gene assessment. Nutr Cancer. 2011;63(8):1226–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Andersen V, Egeberg R, Tjonneland A, Vogel U. ABCC2 transporter gene polymorphisms, diet and risk of colorectal cancer: a Danish prospective cohort study. Scand J Gastroenterol. 2012;47(5):572–4.

    Article  CAS  PubMed  Google Scholar 

  60. Turner F, Smith G, Sachse C, Lightfoot T, Garner RC, Wolf CR, et al. Vegetable, fruit and meat consumption and potential risk modifying genes in relation to colorectal cancer. Int J Cancer. 2004;112(2):259–64.

    Article  CAS  PubMed  Google Scholar 

  61. Koushik A, Hunter DJ, Spiegelman D, Beeson WL, van den Brandt PA, Buring JE, et al. Fruits, vegetables, and colon cancer risk in a pooled analysis of 14 cohort studies. J Natl Cancer Inst. 2007;99(19):1471–83.

    Article  PubMed  Google Scholar 

  62. Tse G, Eslick GD. Cruciferous vegetables and risk of colorectal neoplasms: a systematic review and meta-analysis. Nutr Cancer. 2014;66(1):128–39.

    Article  CAS  PubMed  Google Scholar 

  63. Wu QJ, Yang Y, Vogtmann E, Wang J, Han LH, Li HL, et al. Cruciferous vegetables intake and the risk of colorectal cancer: a meta-analysis of observational studies. Ann Oncol. 2013;24(4):1079–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Epplein M, Wilkens LR, Tiirikainen M, Dyba M, Chung FL, Goodman MT, et al. Urinary isothiocyanates; glutathione S-transferase M1, T1, and P1 polymorphisms; and risk of colorectal cancer: the multiethnic cohort study. Cancer Epidemiol Biomarkers Prev. 2009;18(1):314–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Vogtmann E, Xiang YB, Li HL, Cai Q, Wu QJ, Xie L, et al. Cruciferous vegetables, glutathione S-transferase polymorphisms, and the risk of colorectal cancer among Chinese men. Ann Epidemiol. 2014;24(1):44–9.

    Article  PubMed  Google Scholar 

  66. Slattery ML, Kampman E, Samowitz W, Caan BJ, Potter JD. Interplay between dietary inducers of GST and the GSTM-1 genotype in colon cancer. Int J Cancer. 2000;87(5):728–33.

    Article  CAS  PubMed  Google Scholar 

  67. Lin HJ, Probst-Hensch NM, Louie AD, Kau IH, Witte JS, Ingles SA, et al. Glutathione transferase null genotype, broccoli, and lower prevalence of colorectal adenomas. Cancer Epidemiol Biomarkers Prev. 1998;7(8):647–52.

    CAS  PubMed  Google Scholar 

  68. Seow A, Yuan JM, Sun CL, Van Den Berg D, Lee HP, Yu MC. Dietary isothiocyanates, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study. Carcinogenesis. 2002;23(12):2055–61.

    Article  CAS  PubMed  Google Scholar 

  69. Giovannucci E, Goldin B. The role of fat, fatty acids, and total energy intake in the etiology of human colon cancer. Am J Clin Nutr. 1997;66(6 Suppl):1564S–71.

    CAS  PubMed  Google Scholar 

  70. Roberts-Thomson IC, Ryan P, Khoo KK, Hart WJ, McMichael AJ, Butler RN. Diet, acetylator phenotype, and risk of colorectal neoplasia. Lancet. 1996;347(9012):1372–4.

    Article  CAS  PubMed  Google Scholar 

  71. Chen J, Stampfer MJ, Hough HL, Garcia-Closas M, Willett WC, Hennekens CH, et al. A prospective study of N-acetyltransferase genotype, red meat intake, and risk of colorectal cancer. Cancer Res. 1998;58(15):3307–11.

    CAS  PubMed  Google Scholar 

  72. Chan AT, Tranah GJ, Giovannucci EL, Willett WC, Hunter DJ, Fuchs CS. Prospective study of N-acetyltransferase-2 genotypes, meat intake, smoking and risk of colorectal cancer. Int J Cancer. 2005;115(4):648–52.

    Article  CAS  PubMed  Google Scholar 

  73. Welfare MR, Cooper J, Bassendine MF, Daly AK. Relationship between acetylator status, smoking, and diet and colorectal cancer risk in the north-east of England. Carcinogenesis. 1997;18(7):1351–4.

    Article  CAS  PubMed  Google Scholar 

  74. Barrett JH, Smith G, Waxman R, Gooderham N, Lightfoot T, Garner RC, et al. Investigation of interaction between N-acetyltransferase 2 and heterocyclic amines as potential risk factors for colorectal cancer. Carcinogenesis. 2003;24(2):275–82.

    Article  CAS  PubMed  Google Scholar 

  75. Kampman E, Slattery ML, Bigler J, Leppert M, Samowitz W, Caan BJ, et al. Meat consumption, genetic susceptibility, and colon cancer risk: a United States multicenter case-control study. Cancer Epidemiol Biomarkers Prev. 1999;8(1):15–24.

    CAS  PubMed  Google Scholar 

  76. Tiemersma EW, Kampman E, de Mesquita HB B, Bunschoten A, van Schothorst EM, Kok FJ, et al. Meat consumption, cigarette smoking, and genetic susceptibility in the etiology of colorectal cancer: results from a Dutch prospective study. Cancer Causes Control. 2002;13(4):383–93.

    Article  PubMed  Google Scholar 

  77. Sundberg K, Widersten M, Seidel A, Mannervik B, Jernstrom B. Glutathione conjugation of bay- and fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione transferases M1–1 and p 1–1. Chem Res Toxicol. 1997;10(11):1221–7.

    Article  CAS  PubMed  Google Scholar 

  78. Andersen V, Ostergaard M, Christensen J, Overvad K, Tjonneland A, Vogel U. Polymorphisms in the xenobiotic transporter Multidrug Resistance 1 (MDR1) and interaction with meat intake in relation to risk of colorectal cancer in a Danish prospective case-cohort study. BMC Cancer. 2009;9:407.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Andersen V, Christensen J, Overvad K, Tjonneland A, Vogel U. Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes. BMC Cancer. 2010;10:484.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Kuriki K, Hirose K, Matsuo K, Wakai K, Ito H, Kanemitsu Y, et al. Meat, milk, saturated fatty acids, the Pro12Ala and C161T polymorphisms of the PPARgamma gene and colorectal cancer risk in Japanese. Cancer Sci. 2006;97(11):1226–35.

    Article  CAS  PubMed  Google Scholar 

  81. Hutter CM, Chang-Claude J, Slattery ML, Pflugeisen BM, Lin Y, Duggan D, et al. Characterization of gene-environment interactions for colorectal cancer susceptibility loci. Cancer Res. 2012;72(8):2036–44. This consortium-based paper evaluates gene-environment interaction involving established CRC susceptibility loci.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Kantor ED, Hutter CM, Minnier J, Berndt SI, Brenner H, Caan BJ, et al. Gene-environment interaction involving recently identified colorectal cancer susceptibility Loci. Cancer Epidemiol Biomarkers Prev. 2014;23(9):1824–33.

    Article  CAS  PubMed  Google Scholar 

  83. Kocarnik JD, Hutter CM, Slattery ML, Berndt SI, Hsu L, Duggan DJ, et al. Characterization of 9p24 risk locus and colorectal adenoma and cancer: gene-environment interaction and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2010;19(12):3131–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Yang B, Thyagarajan B, Gross MD, Fedirko V, Goodman M, Bostick RM. No evidence that associations of incident, sporadic colorectal adenoma with its major modifiable risk factors differ by chromosome 8q24 region rs6983267 genotype. Mol Carcinog. 2014;53 Suppl 1:E193–200.

    Article  CAS  PubMed  Google Scholar 

  85. Kantor ED, Lampe JW, Peters U, Vaughan TL, White E. Long-chain omega-3 polyunsaturated fatty acid intake and risk of colorectal cancer. Nutr Cancer. 2014;66(4):716–27.

    Article  CAS  PubMed  Google Scholar 

  86. Figueiredo JC, Hsu L, Hutter CM, Lin Y, Campbell PT, Baron JA, et al. Genome-wide diet-gene interaction analyses for risk of colorectal cancer. PLoS Genet. 2014;10(4):e1004228. This paper evaluates gene-diet interaction across the entire genome.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Du M, Zhang X, Hoffmeister M, Schoen RE, Baron J, Berndt SI, et al. No evidence of gene-calcium interactions from genome-wide analysis of colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2014.

  88. Figueiredo JC, Lewinger JP, Song C, Campbell PT, Conti DV, Edlund CK, et al. Genotype-environment interactions in microsatellite stable/microsatellite instability-low colorectal cancer: results from a genome-wide association study. Cancer Epidemiol Biomarkers Prev. 2011;20(5):758–66.

    Article  PubMed Central  PubMed  Google Scholar 

  89. Hutter CM, Mechanic LE, Chatterjee N, Kraft P, Gillanders EM. Gene-environment interactions in cancer epidemiology: a National Cancer Institute Think Tank report. Genet Epidemiol. 2013;37(7):643–57. This paper provides a comprehensive discussion of the current state of gene-environment interaction in cancer epidemiology, and discusses methodological approaches used to evaluate interaction.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Fernandez-Rozadilla C, Cazier JB, Tomlinson I, Brea-Fernandez A, Lamas MJ, Baiget M, et al. A genome-wide association study on copy-number variation identifies a 11q11 loss as a candidate susceptibility variant for colorectal cancer. Hum Genet. 2014;133(5):525–34.

    Article  CAS  PubMed  Google Scholar 

  91. Bind MA, Coull B, Suh H, Wright R, Baccarelli A, Vokonas P, et al. A novel genetic score approach using instruments to investigate interactions between pathways and environment: application to air pollution. PLoS One. 2014;9(4):e96000.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Resler AJ, Malone KE, Johnson LG, Malkki M, Petersdorf EW, McKnight B, et al. Genetic variation in TLR or NFkappaB pathways and the risk of breast cancer: a case-control study. BMC Cancer. 2013;13:219.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Shui IM, Mucci LA, Kraft P, Tamimi RM, Lindstrom S, Penney KL, et al. Vitamin D-related genetic variation, plasma vitamin D, and risk of lethal prostate cancer: a prospective nested case-control study. J Natl Cancer Inst. 2012;104(9):690–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Slattery ML, Wolff RK, Lundgreen A. A pathway approach to evaluating the association between the CHIEF pathway and risk of colorectal cancer. Carcinogenesis. 2014.

Download references

Acknowledgments

E.D. Kantor is supported by the National Cancer Institute (T32 CA 009001).

Compliance with Ethics Guidelines

Conflict of Interest

Elizabeth D. Kantor and Edward L. Giovannucci declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth D. Kantor.

Additional information

This article is part of the Topical Collection on Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantor, E.D., Giovannucci, E.L. Gene-Diet Interactions and Their Impact on Colorectal Cancer Risk. Curr Nutr Rep 4, 13–21 (2015). https://doi.org/10.1007/s13668-014-0114-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-014-0114-2

Keywords

Navigation