Skip to main content

Advertisement

Log in

Influence of Annealing on Microstructural Evolution, Precipitation Sequence, and Fracture Toughness of Cryorolled Al–Cu–Si Alloy

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Microstructural evolution, precipitation sequence, and fracture toughness of cryorolled Al 2014 alloy subjected to annealing treatment were investigated in the present work. Al 2014 alloy was solutionized (ST) and subjected to cryorolling (CR) up to effective true strain of 2.3. The CR Al 2014 alloy samples were annealed (AN) at temperatures ranging from 100 to 350 °C for the duration of 45 min. TEM and XRD studies of the CR and CR + AN were made to understand its precipitation kinetics. Fracture toughness tests were performed on CR and CR + AN alloy, and its deformation behavior was correlated with microstructural features. The improvement in fracture toughness K ee (23.06–37.8 MPa √m) of CR Al 2014 alloy was observed as compared to ST alloy. The fracture toughness was retained up to 200 °C for CR alloy, but it started decreasing beyond 200 °C. The improvement in fracture toughness of cryorolled Al 2014 alloy at low-temperature annealing from 100 to 200 °C is attributed to the formation of GP zones and metastable phase θ′. However, beyond temperature 200 °C, fracture toughness has reduced due to combined effect of recovery, recrystallization, and formation of stable coarser phase such as θ and λ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Gavgali, B. Aksakal, Effects of various homogenisation treatments on the hot workability of ingot aluminium alloy AA2014. Mater. Sci. Eng. A 254(1), 189–199 (1998)

    Article  Google Scholar 

  2. E.A. Starke, J.T. Staley, Application of modern aluminum alloys to aircraft. Prog. Aerosp. Sci. 32(2), 131–172 (1996)

    Article  Google Scholar 

  3. Y.S.D. Shenglong, A glimpse at the development and application of aluminum alloys in aviation industry. Mater. Rev. 2, 022 (2005)

    Google Scholar 

  4. J. Mao, S.B. Kang, J.O. Park, Grain refinement, thermal stability and tensile properties of 2024 aluminum alloy after equal-channel angular pressing. J. Mater. Process. Technol. 159(3), 314–320 (2005)

    Article  Google Scholar 

  5. S.K. Varma, D. Salas, E. Corral, E. Esquivel, K.K. Chawla, R. Mahaptra, Microstructural development during aging of 2014 aluminum alloy composite. J. Mater. Sci. 34(8), 1855–1863 (1999)

    Article  Google Scholar 

  6. Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 61(3), 782–817 (2013)

    Article  Google Scholar 

  7. R.B. Figueiredo, T.G. Langdon, Using severe plastic deformation for the processing of advanced engineering materials. Mater. Trans. 50(7), 1613–1619 (2009)

    Article  Google Scholar 

  8. V.M. Segal, Severe plastic deformation: simple shear versus pure shear. Mater. Sci. Eng. A 338(1), 331–344 (2002)

    Article  Google Scholar 

  9. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials -development of the accumulative roll-bonding (ARB) process. Acta Mater. 47, 579–583 (1999)

    Article  Google Scholar 

  10. A.P. Zhilyaev, T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications. Prog. Mater. Sci. 53(6), 893–979 (2008)

    Article  Google Scholar 

  11. J.Y. Huang, Y.T. Zhu, H. Jiang, T.C. Lowe, Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 49(9), 1497–1505 (2001)

    Article  Google Scholar 

  12. R.Z. Valiev, I.V. Alexandrov, R.K. Islamgaliev, Processing and properties of nanostructured materials prepared by severe plastic deformation, in Nanostructured Materials, ed. by G. Chow, N.I. Noskova (Springer, Berlin, 1998), pp. 121–142

  13. S.K. Panigrahi, R. Jayaganthan, V. Pancholi, Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy. Mater. Des. 30(6), 1894–1901 (2009)

    Article  Google Scholar 

  14. S.K. Panigrahi, R. Jayaganthan, V. Chawla, Effect of cryorolling on microstructure of Al–Mg–Si alloy. Mater. Lett. 62(17), 2626–2629 (2008)

    Article  Google Scholar 

  15. N. Rangaraju, T. Raghuram, B.V. Krishna, K.P. Rao, P. Venugopal, Effect of cryo-rolling and annealing on microstructure and properties of commercially pure aluminium. Mater. Sci. Eng. A 398, 246–251 (2005)

    Article  Google Scholar 

  16. Y. Wang, M. Chen, F. Zhou, E. Ma, High tensile ductility in a nanostructured metal. Nature 419, 912–915 (2002)

    Article  Google Scholar 

  17. P.N. Rao, D. Singh, R. Jayaganthan, Effect of annealing on microstructure and mechanical properties of Al 6061 alloy processed by cryorolling. Mater. Sci. Technol. 29(1), 76–82 (2013)

    Article  Google Scholar 

  18. S.K. Panigrahi, R. Jayaganthan, Development of ultrafine grained Al–Mg–Si alloy with enhanced strength and ductility. J. Alloys Compd. 470(1), 285–288 (2009)

    Article  Google Scholar 

  19. S.K. Panigrahi, R. Jayaganthan, A comparative study on mechanical properties of Al 7075 alloy processed by rolling at cryogenic temperature and room temperature. Mater. Sci. Forum 584, 734–740 (2008)

    Article  Google Scholar 

  20. S.K. Panigrahi, R. Jayaganthan, Development of ultrafine grained high strength age hardenable Al 7075 alloy by cryorolling. Mater. Des. 32(6), 3150–3160 (2011)

    Article  Google Scholar 

  21. D. Singh, P.N. Rao, R. Jayaganthan, Microstructures and impact toughness behavior of Al 5083 alloy processed by cryorolling and afterwards annealing. Int. J. Min. Metall. Mater. 20(8), 759–769 (2013)

    Article  Google Scholar 

  22. T. Shanmugasundaram, B.S. Murty, V.S. Sarma, Development of ultrafine grained high strength Al–Cu alloy by cryorolling. Scr. Mater. 54, 2013–2017 (2006)

    Article  Google Scholar 

  23. A. Hohenwarter, R. Pippan, Fracture toughness evaluation of ultrafine-grained nickel. Scr. Mater. 64, 982–985 (2011)

    Article  Google Scholar 

  24. A. Hohenwarter, R. Pippan, Anisotropic fracture behavior of ultrafine-grained iron. Mater. Sci. Eng. A 527(10), 2649–2656 (2010)

    Article  Google Scholar 

  25. M. Li, D. Guo, T. Ma, G. Zhang, Y. Shi, X. Zhang, High fracture toughness in a hierarchical nanostructured zirconium. Mater. Sci. Eng. A 606, 330–333 (2014)

    Article  Google Scholar 

  26. H. Darban, B. Mohammadi, F. Djavanroodi, Effect of equal channel angular pressing on fracture toughness of Al-7075. Eng. Fail. Anal. 65, 1–10 (2016)

    Article  Google Scholar 

  27. P. Das, R. Jayaganthan, T. Chowdhury, I. Singh, Improvement of fracture toughness (K1c) of 7075 Al alloy by cryorolling process. Mater. Sci. Forum 683, 81–94 (2011)

    Article  Google Scholar 

  28. C.C. Koch, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49(7), 657–662 (2003)

    Article  Google Scholar 

  29. S.K. Panigrahi, R. Jayaganthan, Effect of annealing on thermal stability, precipitate evolution, and mechanical properties of cryorolled Al 7075 Alloy. Metall. Mater. Trans. A 42(10), 3208–3217 (2011)

    Article  Google Scholar 

  30. A. Dhal, S.K. Panigrahi, M.S. Shunmugam, Influence of annealing on stain hardening behaviour and fracture properties of a cryorolled Al 2014 alloy. Mater. Sci. Eng. A 645, 383–392 (2015)

    Article  Google Scholar 

  31. A. Rollett, F.J. Humphreys, G.S. Rohrer, M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Pergamon, 2004)

    Google Scholar 

  32. A. Hohenwarter, R. Pippan, An overview on the fracture behavior of metals processed by high pressure torsion. Mater. Sci. Forum 667, 671–676 (2010)

    Article  Google Scholar 

  33. W.F. Brown, Review of Developments in Plane Strain Fracture Toughness Testing, vol. 463 (ASTM International, West Conshohocken, 1970)

    Book  Google Scholar 

  34. T.L. Anderson, T.L. Anderson, Fracture Mechanics: Fundamentals and Applications (CRC Press, Boca Raton, 2005)

    Google Scholar 

  35. D. Broek, Elementary Engineering Fracture Mechanics (Springer, Berin, 2012)

    Google Scholar 

  36. F.I. Baratta, L.M. Barker. Comparisons of fracture toughness measurements by the short rod and ASTM standard method of test for plane-strain fracture toughness of metallic materials (E 399-78). J. Test. Eval. 8(3) 97-102(1980)

    Article  Google Scholar 

  37. E.B. Tochaee, H.R.M. Hosseini, S.M.S. Reihani, On the fracture toughness behavior of in-situ Al–Ti composites produced via mechanical alloying and hot extrusion. J. Alloys Compd. 681, 12–21 (2016)

    Article  Google Scholar 

  38. A. E992, Standard practice for determination of a fracture toughness of steels using equivalent energy methodology (1984)

  39. J.R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35(2), 379–386 (1968)

    Article  Google Scholar 

  40. E.E. Gdoutos, Fracture Mechanics: An Introduction, vol. 123 (Springer, Berlin, 2006)

    Google Scholar 

  41. G.H.B. Donato, C. Ruggieri. Estimation procedures for J and CTOD fracture parameters using three-point bend specimens. in International Pipeline Conference (American Society of Mechanical Engineers, 2006)

  42. C.P. Harper, Effect of alumina particle additions on the aging kinetics of 2014-aluminum matrix composites (1991)

  43. P. Bassani, E. Gariboldi, G. Vimercati, Calorimetric analyses on aged Al–4.4Cu–0.5Mg–0.9Si–0.8Mn alloy (AA2014 grade). J. Therm. Anal. Calorim. 87(1), 247–253 (2007)

    Article  Google Scholar 

  44. S. Abis, M. Massazza, P. Mengucci, G. Riontino, Early ageing mechanisms in a high-copper AlCuMg alloy. Scr. Mater. 45(6), 685–691 (2001)

    Article  Google Scholar 

  45. D.J. Chakrabarti, D.E. Laughlin, Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Prog. Mater. Sci. 49(3), 389–410 (2004)

    Article  Google Scholar 

  46. I. Dutta, C.P. Harper, G. Dutta, Role of Al2O3 particulate reinforcements on precipitation in 2014 Al-matrix composites. Metall. Mater. Trans. A 25(8), 1591–1602 (1994)

    Article  Google Scholar 

  47. A. Dhal, S.K. Panigrahi, M.S. Shunmugam, Precipitation phenomena, thermal stability and grain growth kinetics in an ultra-fine grained Al 2014 alloy after annealing treatment. J. Alloys Compd. 649, 229–238 (2015)

    Article  Google Scholar 

  48. G.E. Dieter, Mechanical Metallurgy 2nd edn. (McGraw-Hill, New York, NY, 1976)

  49. ASM Handbook, Volume 12: Fractography (2nd printing) (ASM International, Materials Park, 1987), p. 2217

  50. B. Li, X. Wang, H. Chen, J. Hu, C. Huang, G. Gou, Influence of heat treatment on the strength and fracture toughness of 7N01 aluminum alloy. J. Alloys Compd. 678, 160–166 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayaganthan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, A., Yogesha, K.K., Kumar, N. et al. Influence of Annealing on Microstructural Evolution, Precipitation Sequence, and Fracture Toughness of Cryorolled Al–Cu–Si Alloy. Metallogr. Microstruct. Anal. 5, 540–556 (2016). https://doi.org/10.1007/s13632-016-0313-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-016-0313-x

Keywords

Navigation