Skip to main content
Log in

Microstructure Evolution in AISI 1080 Eutectoid Steel Under Cyclic Quenching Treatment

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In this research work, annealed AISI 1080 steel bars (coarse pearlitic structure) were subjected to cyclic heat treatments (1–3 cycles) that involved repeated short duration (6 min) holding at a temperature of 775 °C (in fully austenitic region) followed by oil quenching to room temperature. This thermal cycling resulted in substantial hardness improvement after 3 cycles with the evolution of a novel microstructure that comprised clusters and submicroscopic spheroids of cementite in a matrix of martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. O.E. Cullen, Continuous short-cycle anneal for spheroidization of cartridge-case steel. Met. Prog. 64, 79–82 (1953)

    Google Scholar 

  2. P. Payson, W.L. Hadapp, J. Leeder, The spheroidizing of steel by isothermal transformation. Trans. Am. Soc. Met. 28, 306–332 (1940)

    Google Scholar 

  3. V. Sista, P. Nash, S.S. Sahay, Accelerated bainitic transformation during cyclic austempering. J. Mater. Sci. 42, 9112–9115 (2007)

    Article  Google Scholar 

  4. S.S. Sahay, C.P. Malhotra, A.M. Kolkhede, Accelerated grain growth behavior during cyclic annealing. Acta Mater. 51, 339–346 (2003)

    Article  Google Scholar 

  5. R. Grange, Strengthening by austenite grain refinement. Trans. Am. Soc. Met. 1, 26–29 (1966)

    Google Scholar 

  6. A. Anashkin, A. Belov, A. Sokolov, A. Bogatov, S. Smirnov, Heat cycling of carbon steel wire. Met. Sci. Heat Treat. 30, 93–97 (1987)

    Google Scholar 

  7. B. Smoljan, An analysis of combined cyclic heat treatment performance. J. Mater. Process. Technol. 155–156, 1704–1707 (2004)

    Article  Google Scholar 

  8. K. Nakazawa, Y. Kawabe, S. Muneki, Grain refinement of high strength maraging steel through cyclic heat treatment. Mater. Sci. Eng. 33, 49–56 (1978)

    Article  Google Scholar 

  9. A. Saha, D.K. Mondal, K. Biswas, J. Maity, Microstructural modifications and changes in mechanical properties during cyclic heat treatment of 0.16% carbon steel. Mater. Sci. Eng. A 534, 465–475 (2012)

    Article  Google Scholar 

  10. A. Saha, D.K. Mondal, J. Maity, Effect of cyclic heat treatment on microstructure and mechanical properties of 0.6 wt% carbon steel. Mater. Sci. Eng. A 527, 4001–4007 (2010)

    Article  Google Scholar 

  11. A. Saha, D.K. Mondal, J. Maity, An alternate approach to accelerated spheroidization in steel by cyclic annealing. J. Mater. Eng. Perform. 20, 114–119 (2011)

    Article  Google Scholar 

  12. J. Maity, A. Saha, D.K. Mondal, K. Biswas, Mechanism of accelerated spheroidization of steel during cyclic heat treatment around upper critical temperature. Philos. Mag. Lett. Taylor Francis 93, 231–237 (2013)

    Article  Google Scholar 

  13. A. Saha, D.K. Mondal, K. Biswas, J. Maity, Development of high strength ductile hypereutectoid steel by cyclic heat treatment process. Mater. Sci. Eng. A 541, 204–215 (2012)

    Article  Google Scholar 

  14. S. Kumar, A. Bhattacharyya, D.K. Mondal, K. Biswas, J. Maity, Dry sliding wear behaviour of medium carbon steel against an alumina disk. Wear 270, 413–421 (2011)

    Article  Google Scholar 

  15. K.H. Prabhudev, Handbook of Heat Treatment of Steels, 1st edn. (Tata McGraw Hill Publishing Company Ltd., New Delhi, 1988), p. 539

    Google Scholar 

  16. G.R. Speich, A. Szirmae, Formation of austenite from ferrite and ferrite–carbide aggregates. Trans. Metall. Soc. AIME. 245, 1063–1074 (1969)

    Google Scholar 

  17. R. Kumar, Physical Metallurgy of Iron and Steel, 1st edn. (Asia Publishing House, Bombay, 1968), pp. 92–93

    Google Scholar 

  18. L. Rayleigh, On the instability of jets. Proc. Lond. Math. Soc. 10, 4–13 (1878)

    Article  Google Scholar 

  19. F.A. Nichols, W.W. Mullins, Surface (interface) and volume diffusion contributions to morphological changes driven by capillarity. Trans. AIME. 233, 1840–1848 (1965)

    Google Scholar 

  20. M. McLean, Microstructural instabilities in metallurgical systems—a review. Met. Sci. 12, 113–122 (1978)

    Article  Google Scholar 

  21. J.W. Martin, R.D. Doherty, Stability of Microstructure in Metallic System (Cambridge University Press, Cambridge, 1976), p. 212

    Google Scholar 

  22. L.D. Graham, R.W. Kraft, Coarsening of eutectic microstructures at elevated temperatures. Trans. AIME. 236, 94–102 (1966)

    Google Scholar 

  23. Y.L. Tian, R.W. Kraft, Mechanisms of pearlite spheroidization. Metall. Trans. A 18A, 1403–1414 (1987)

    Article  Google Scholar 

  24. J.D. Verhoeven, The role of divorced eutectoid transformation in the spheroidization of 52100 steel. Metall. Mater. Trans. A. 31A, 2431–2437 (2000)

    Article  Google Scholar 

  25. Anonymous, in Properties and Selection of Metals, Metals Handbook, vol. 1, 8th ed., ed. by T. Lyman (American Society of Metals, Metals Park, 1961), p. 54

  26. N.Ya. Rokhmanov, A.F. Sirenko, S.A. Bakharev, Thermal expansion of cementite in hypereutectoid iron–carbon alloy. Met. Sci. Heat Treat. 39, 7–10 (1997)

    Article  Google Scholar 

  27. M. Selin, Using regression analysis to optimize the combination of thermal conductivity and hardness in compacted graphite iron. Key Eng. Mater. 457, 337–342 (2011)

    Article  Google Scholar 

  28. G.E. Totten, M. Narazaki, R.R. Blackwood, L.M. Jarvis, in Failure Analysis and Prevention, ed. by W.T. Becker, R.J. Shipley (ASM International, Metals Park, 2002), pp. 92–223

  29. A.V. Sverdlin, A.R. Ness, in: Steel Heat Treatment Hand Book, ed. by G.E. Totten, M.A.H. Howes (Marcel Dekker, New York, 1997), p. 15

  30. Z. Nishiyama, Martensitic Transformation, 1st edn. (Academic Press, New York, 1978), p. 137

    Google Scholar 

  31. G. Straffelini, D. Trabucco, A. Molinari, Oxidative wear of heat-treated steels. Wear 250, 485–491 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Maity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Saha, A. & Maity, J. Microstructure Evolution in AISI 1080 Eutectoid Steel Under Cyclic Quenching Treatment. Metallogr. Microstruct. Anal. 4, 355–370 (2015). https://doi.org/10.1007/s13632-015-0222-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-015-0222-4

Keywords

Navigation