Skip to main content
Log in

Characterization of a Directionally Solidified Sn–Pb–Sb Ternary Eutectic Alloy

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

A Sn–40.5wt%Pb–2.6wt%Sb ternary eutectic alloy was prepared using a vacuum melting furnace and a casting furnace. The samples were directionally solidified at a constant growth rate (V = 16.5 μm/s) under different temperature gradients (G = 1.05–3.88 K/mm) and at a constant temperature gradient (G = 3.88 K/mm) under different growth rates (V = 8.3–498 μm/s). The effects of G and V on lamellar spacing (λ), microhardness (HV), and ultimate tensile strength (σ) were determined. The lamellar spacing and microhardness were measured from both longitudinal and transverse sections of the sample. The relationships between solidification parameters (G, V), microstructure parameters (λ L, λ T), and mechanical properties (HV, σ) were determined from linear regression analysis. It was found that the microhardness and tensile strength increase with increasing G and V as well as with decreasing λ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H.Y. Liu, Y. Li, H. Jones, Thermal stability of the αΖn–Mg2Zn11 and αZn–βAl eutectics obtained by Bridgman growth. J. Mater. Sci. 33, 1159–1164 (1998)

    Article  Google Scholar 

  2. L.R. Garcia, W.R. Osorio, L.C. Peixoto, A. Garcia, Mechanical properties of Sn–Zn lead-free solder alloys based on the microstructure array. Mater. Charact. 61, 212–220 (2010)

    Article  Google Scholar 

  3. Y. Liao, I. Baker, Evolution of the microstructure and mechanical properties of eutectic Fe30Ni20Mn35Al15. J. Mater. Sci. 46, 2009–2017 (2011)

    Article  Google Scholar 

  4. H. Ding, G. Nie, R. Chen, J. Guo, H. Fu, Influence of oxygen on microstructure and mechanical properties of directionally solidified Ti–47Al–2Cr–2Nb alloy. Mater. Des. 41, 108–113 (2012)

    Article  Google Scholar 

  5. T. Hosch, R.E. Napolitano, The effect of the flake to fiber transition in silicon morphology on the tensile properties of Al–Si eutectic alloys. Mater. Sci. Eng., A 528, 226–232 (2010)

    Article  Google Scholar 

  6. R.J. Contieri, E.S.N. Lopes, M.T. Cruz, A.M. Costa, C.R.M. Afonso, R. Caram, Microstructure of directionally solidified Ti–Fe eutectic alloy with low interstitial and high mechanical strength. J. Cryst. Growth 333, 40–47 (2011)

    Article  Google Scholar 

  7. J. Fan, X. Li, Y. Su, R. Chen, J. Gou, H. Fu, Dependency of microstructure parameters and microhardness on the temperature gradient for directionally solidified Ti–49Al alloy. Mater. Chem. Phys. 130, 1232–1238 (2011)

    Article  Google Scholar 

  8. J. Fan, X. Li, Y. Su, J. Guo, H. Fu, The microstructure parameters and microhardness of directionally solidified Ti–43Al–3Si alloy. J. Alloy. Compd. 506, 593–599 (2010)

    Article  Google Scholar 

  9. G.Y. Li, B.L. Chen, X.Q. Shi, S.C.K. Wong, Z.F. Wang, Effects of Sb addition on tensile strength of Sn–3.5Ag–0.7Cu solder alloy and joint. Thin Solid Films 504, 421–425 (2006)

    Article  Google Scholar 

  10. R. Mahmudi, M. Pourmajidian, A.R. Geranmayeh, S. Gorgannejad, S. Hashemizadeh, Indentation creep of lead–free Sn–3.5 Ag solder alloy: effects of cooling rate and Zn/Sb addition. Mater. Sci. Eng., A 565, 236–242 (2013)

    Article  Google Scholar 

  11. R. Mahmudi, S. Mahin-Shirazi, Effect of Sb addition on the tensile deformation behavior of lead-free Sn–3.5Ag solder alloy. Mater. Des. 32, 5027–5032 (2011)

    Article  Google Scholar 

  12. F. Abd El-Salam, M.T. Mostafa, R.H. Nada, A.M. Abd El-Khalek, Effect of antimony addition on characteristics of melt-spun Pb–Sn alloy. Egypt. J. Sol. 24, 67–77 (2001)

    Google Scholar 

  13. X.W. Hu, S.M. Li, S.F. Gao, L. Liu, H.Z. Fu, Research on lamellar structure and microhardness in directionally solidified ternary Sn–40.5Pb–2.5Sb eutectic alloy. J. Alloy. Compd. 493, 116–121 (2010)

    Article  Google Scholar 

  14. M. Şahin, The Directional Solidification of Binary and Ternary Metallic Alloys and Investigation the Physical Properties of Them. PhD Thesis, Niğde University, 2012

  15. A. Ourdjini, J. Liu, R. Elliott, Eutectic spacing selection in Al–Cu system. Mater. Sci. Technol. 10, 312–318 (1994)

    Article  Google Scholar 

  16. T.B. Massalski (ed.), Binary Alloy Phase Diagrams, vol. 3 (ASM International, Materials Park, 1990)

  17. S. Khan, A. Ourdjini, R. Elliott, Interflake spacing growth velocity relationship in Al–Si and Al–CuAl2 eutectic alloys. Mater. Sci. Technol. 8, 516–522 (1992)

    Article  Google Scholar 

  18. H. Kaya, E. Çadırlı, M. Gündüz, Effect of growth rates and temperature gradients on the spacing and undercooling in the broken-lamellar eutectic growth (Sn–Zn eutectic system). J. Mater. Eng. Perform. 12, 456–469 (2003)

    Article  Google Scholar 

  19. J. Fan, X. Li, Y. Su, J. Guo, H. Fu, Effect of growth rate on microstructure parameters and microhardness in directionally solidified Ti–49Al alloy. Mater. Des. 34, 552–558 (2012)

    Article  Google Scholar 

  20. Z. Shang, J. Shen, J. Zhang, L. Wang, H. Fu, Effect of withdrawal rate on the microstructure of directionally solidified NiAl–Cr(Mo) hypereutectic alloy. Intermetallics 22, 99–105 (2012)

    Article  Google Scholar 

  21. F. Yılmaz, R. Elliott, The microstructure and mechanical properties of unidirectionally solidified Al–Si alloys. J. Mater. Sci. 24, 2065–2070 (1989)

    Article  Google Scholar 

  22. Y. Li, S. Miura, K. Ohsasa, C. Ma, H. Zhang, Ultrahigh-temperature Nbss/Nb5Si3 fully-lamellar microstructure developed by directional solidification in OFZ furnace. Intermetallics 19, 460–469 (2011)

    Article  Google Scholar 

  23. V.T. Witusiewicz, U. Hecht, S. Rex, M. Apel, In situ observation of microstructure evolution in low-melting Bi–In–Sn alloys by light microscopy. Acta Mater. 53, 3663–3669 (2005)

    Article  Google Scholar 

  24. J. Lapin, L. Ondrus, M. Nazmy, Directional solidification of ıntermetallic Ti–46Al–2 W–0.5Si alloy in alumina moulds. Intermetallics 10, 1019–1031 (2002)

    Article  Google Scholar 

  25. J.D. Wilde, L. Froyen, S. Rex, Coupled two-phase [α (Al) + θ (Al2Cu)] planar growth and destabilisation along the univariant eutectic reaction in Al–Cu–Ag alloys. Scr. Mater. 51, 533–538 (2004)

    Article  Google Scholar 

  26. X. Hu, K. Li, F. Ai, Research on lamellar structure and micro-hardness of directionally solidified Sn–58Bi eutectic alloy. China Foundry 9, 360–365 (2012)

    Google Scholar 

  27. X. Hu, W. Chen, B. Wu, Microstructure and tensile properties of Sn–1Cu lead-free solder alloy produced by directional solidification. Mater. Sci. Eng., A 556, 816–823 (2012)

    Article  Google Scholar 

  28. Y. Koçak, S. Engin, U. Böyük, N. Maraşlı, The influence of the growth rate on the eutectic spacings, undercoolings and microhardness of directionaly solidified bismuth–lead eutectic alloy. Curr. Appl. Phys. 13, 587–593 (2013)

    Article  Google Scholar 

  29. H. Su, J. Zhang, L. Liu, H. Fu, Preparation and microstructure evolution of directionally solidified Al2O3/YAG/YSZ ternary eutectic ceramics by a modified electron beam floating zone melting. Mater. Lett. 91, 92–95 (2013)

    Article  Google Scholar 

  30. A.I. Telli, S.E. Kısakürek, Effect of antimony additions on hardness and tensile properties of directionally solidified Al–Si eutectic alloy. Mater. Sci. Technol. 4, 153–156 (1988)

    Article  Google Scholar 

  31. F. Vnuk, M. Sahoo, D. Baragor, R.W. Smith, Mechanical properties of Sn–Zn eutectic alloys. J. Mater. Sci. 15, 2573–2583 (1980)

    Article  Google Scholar 

  32. U. Böyük, N. Maraşlı, The microstructure parameters and microhardness of directionally solidified Sn–Ag–Cu eutectic alloy. J. Alloy. Compd. 485, 264–269 (2009)

    Article  Google Scholar 

  33. E. Çadırlı, U. Böyük, H. Kaya, N. Maraşlı, Determination of mechanical, electrical and thermal properties of the Sn–Bi–Zn ternary alloy. J. Non-Cryst. Solids 357, 2876–2881 (2011)

    Article  Google Scholar 

  34. J. Lapin, J. Marecek, Effect of growth rate on microstructure and mechanical properties of directionally solidified multiphase ıntermetallic Ni–Al–Cr–Ta–Mo–Zr alloy. Intermetallics 14, 1339–1344 (2006)

    Article  Google Scholar 

  35. J. Fan, X. Li, Y. Su, J. Guo, H. Fu, Dependency of microhardness on solidification processing parameters and microstructure characteristics in the directionally solidified Ti–46Al–0.5 W–0.5Si alloy. J. Alloy. Compd. 504, 60–64 (2010)

    Article  Google Scholar 

  36. E. Çadırlı, H. Kaya, M. Şahin, Effects of cooling rate and composition on mechanical properties of directionally solidified Pb100−x–Snx solders. J. Electron. Mater. 40, 1903–1911 (2011)

    Article  Google Scholar 

  37. J.F. Bromley, F. Vnuk, R.W. Smith, Mechanical properties of the Sn–Ag3Sn alloys. J. Mater. Sci. 18, 3143–3153 (1983)

    Article  Google Scholar 

  38. R. Mahmudi, A. Rezaee-Bazzaz, Superplastic power-law creep of Sn–40 % Pb–2.5 % Sb peritectic alloy. J. Mater. Sci. 42, 4051–4059 (2007)

    Article  Google Scholar 

  39. I. Shohji, T. Yoshida, T. Takahashi, S. Hioki, Tensile properties of Sn–Ag based lead-free solders and strain rate sensitivity. Mater. Sci. Eng., A 366, 50–55 (2004)

    Article  Google Scholar 

  40. W.J. Plumbridge, C.R. Gagg, Effects of strain rate and temperature on the stress–strain response of solder alloys. J. Mater. Sci. 10, 461–468 (1999)

    Google Scholar 

Download references

Acknowledgments

This project was supported by the Niğde University Scientific Research Project Unit under contract No: FEB 2011/23. The authors thank for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Çadırlı.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çadırlı, E., Şahin, M. & Turgut, Y. Characterization of a Directionally Solidified Sn–Pb–Sb Ternary Eutectic Alloy. Metallogr. Microstruct. Anal. 4, 286–297 (2015). https://doi.org/10.1007/s13632-015-0211-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-015-0211-7

Keywords

Navigation