Skip to main content

Advertisement

Log in

Infezioni virali del sistema nervoso centrale: meningoencefaliti ed encefalopatie croniche progressive

Viral infections of central nervous system: meningoencephalitis and chronic progressive encephalopathies

  • Rassegna
  • Published:
La Rivista Italiana della Medicina di Laboratorio - Italian Journal of Laboratory Medicine

Riassunto

In questa rassegna sono stati descritti i principali virus che presentano uno spiccato tropismo per il sistema nervoso centrale (SNC) e sono in grado di produrre patologie sia acute sia croniche. Con l’avanzare delle conoscenze, si amplia sempre di più il pannello di virus considerati neurotropi e, di conseguenza, la necessità di idonei strumenti diagnostici. I test di amplificazione genica hanno svolto un ruolo chiave, in quanto hanno notevolmente migliorato i tempi di refertazione, la qualità della diagnosi e la tempestività terapeutica. Alcuni virus neurotropi, come quelli appartenenti alla famiglia Herpesviridae, sono ben conosciuti ed è ora possibile una diagnosi rapida e, di conseguenza, una terapia precoce. Tuttavia, altri virus appartenenti alla famiglia Picornaviridae, come i Parechovirus e l’enterovirus 71, invece, sono stati recentemente identificati come patogeni umani. Sono state anche illustrate alcune encefalopatie croniche progressive, come la panencefalite progressiva da virus della rosolia (PRP), la panencefalite subacuta sclerosante (PESS) da virus del morbillo e la leucoencefalopatia multifocale progressiva (PML) da virus JC (JCV). Infine, particolare rilievo è stato dato alle infezioni virali cosiddette “emergenti”. Cambiamenti climatici, modificazione delle abitudini sociali e culturali, mutazioni genetiche degli stessi virus e cambiamenti nell’ecologia dei vettori hanno contribuito all’emergenza di queste infezioni. Di conseguenza, l’epidemiologia delle infezioni virali del SNC sta cambiando e richiede appropriati sistemi di sorveglianza per una precoce individuazione e una tempestiva azione di controllo.

Summary

In this review the most important neurotropic viruses, able to cause acute and chronic infections, have been described. The panel of neutropic viruses is increasing and improved diagnostic tools are necessary. Molecular tests play a key role in microbiological diagnosis, because they are fast and reliable. The viruses of Herpesviridae family are well known and now a rapid diagnosis allows an early therapy. Other viruses of the Picornaviridae family, as Parechovirus and enterovirus 71, have been recently identified as human pathogens. Some chronic progressive encephalopathies, as the progressive panencephalitis by rubella virus, the subacute sclerosing panencephalitis by measles virus and the progressive multifocal leukoencephalopathy by JC virus have been illustrated. Finally, the emerging viral infections have been described. Several factors, including human and animal behaviors, travel, climate change, mutation of a pathogen genome and the changes in the ecology of vectors contribute to the emergence of infectious pathogens. As a consequence, the worldwide epidemiology of viral CNS diseases continuously evolves and enhanced surveillance regimes have been issued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Bibliografia

  1. DeBiasi RL, Tyler KL (2004) Molecular methods for diagnosis of viral encephalitis. Clin Microbiol Rev 17:903–925

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Tunkel AR, Glaser CA, Bloch KC et al. (2008) The management of encephalitis: clinical practice guidelines by the infectious diseases Society of America. Clin Infect Dis 47:303–327

    CAS  PubMed  Google Scholar 

  3. Steiner I, Budka H, Chaudhuri A et al. (2010) Viral meningoencephalitis: a review of diagnostic methods and guidelines for management. Eur J Neurol 17:999–1009

    CAS  PubMed  Google Scholar 

  4. Stahl JP, Mailles A, Dacheux L, Morand P (2011) Epidemiology of viral encephalitis in 2011. Med Mal Infect 41:453–464

    PubMed  Google Scholar 

  5. Nasri D, Bouslama L, Pillet S et al. (2007) Basic rationale current methods and future directions for molecular typing of human enterovirus. Expert Rev Mol Diagn 7:419–434

    CAS  PubMed  Google Scholar 

  6. Kupila L, Vuorinen T, Vainionpää R et al. (2005) Diagnosis of enteroviral meningitis by use of polymerase chain reaction of cerebrospinal fluid, stool, and serum specimens. Clin Infect Dis 40:982–987

    PubMed  Google Scholar 

  7. Kupila L, Vuorinen T, Vainionpää R et al. (2006) Etiology of aseptic meningitis and encephalitis in a adult population. Neurology 66:75–80

    CAS  PubMed  Google Scholar 

  8. Peigue-Lafeuille H, Archimbaud C, Mirand A et al. (2006) From prospective molecular diagnosis of enterovirus meningitis… to prevention of antibiotic resistance. Med Mal Infect 36:124–131

    CAS  PubMed  Google Scholar 

  9. Lee BE, Chawla R, Langley JM et al. (2006) Paediatric investigators collaborative network on infections in Canada (PICNIC) study of aseptic meningitis. BMC Infect Dis 6:68

    PubMed Central  PubMed  Google Scholar 

  10. Tapiainen T, Prevots R, Izurieta HS et al. (2007) Aseptic meningitis: case definition and guidelines for collection, analysis and presentation of immunization safety data. Vaccine 25:5793–5802

    CAS  PubMed  Google Scholar 

  11. Lee BE, Davies HD (2007) Aseptic meningitis. Curr Opin Infect Dis 20:272–277

    PubMed  Google Scholar 

  12. Lewthwaite P, Perera D, Ooi MH et al. (2010) Enterovirus 75 encephalitis in childern, southern India. Emerg Infect Dis 16:1780–1782

    PubMed Central  PubMed  Google Scholar 

  13. Kumar A, Shukla D, Kumar R et al. (2013) Molecular epidemiology of enteroviruses associated with encephalitis in children from India. Arch Virol 158:211–215

    CAS  PubMed  Google Scholar 

  14. Tee KK, Lam TT, Chan YF et al. (2010) Evolutionary genetics of human enterovirus 71: origin, population dynamics, natural selection, and seasonal periodicity of the VP1 gene. J Virol 84:3339–3350

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Schmidt N, Lennette E, Ho H (1974) An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis 129:304–309

    CAS  PubMed  Google Scholar 

  16. Ooi MH, Solomon T, Podin Y et al. (2007) Evaluation of different clinical sample types in diagnosis of human enterovirus 71-associated hand-foot-and-mouth disease. J Clin Microbiol 45:1858–1866

    PubMed Central  PubMed  Google Scholar 

  17. Ooi MH, Wong SC, Lewthwaite P et al. (2010) Clinical features, diagnosis and management of human enterovirus 71 infection. Lancet Neurol 9:1097–1105

    PubMed  Google Scholar 

  18. Solomon T, Lewthwaite P, Perera D et al. (2010) Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 10:778–790

    PubMed  Google Scholar 

  19. King AMQ, Brown F, Christian P et al. (1999) Family picornaviridae. In: Van Regenmortel MHV, Fauquet CM, Bishop DHL et al. (eds) Virus taxonomy. Seventh report of the international commitee for the taxonomy of viruses. Academic Press, New York, p 996

    Google Scholar 

  20. Khesturiani N, Lamonte-Fowlkes A, Oberst S, Pallansch MA (2006) Enterovirus surveillance—United States, 1970–2005. MMWR Surveill Summ 55:1–20

    Google Scholar 

  21. Harvala H, Robertson I, Chieochansin T et al. (2009) Specific association of human parechovirus type 3 with sepsis and fever in young infants, as identified by direct typing of cerebrospinal fluid samples. J Infect Dis 199:1753–1760

    CAS  PubMed  Google Scholar 

  22. Piñeiro L, Vicente D, Montes M et al. (2010) Human parechovirus in infants with systemic infection. J Med Virol 82:1790–1796

    PubMed  Google Scholar 

  23. Harvala H, McLeish N, Kondracka J et al. (2011) Comparison of human parechovirus and enterovirus detection frequencies in cerebrospinal fluid samples collected over a 5-year period in Edinburgh: HPeV3 identified as the most common picornavirus type. J Med Virol 83:889–896

    PubMed  Google Scholar 

  24. Ito M, Yamashita T, Tsuzuki H et al. (2004) Isolation and identification of a novel human parechovirus. J Gen Virol 85:391–398

    CAS  PubMed  Google Scholar 

  25. Boivin G, Abed Y, Boucher FD (2005) Human parechovirus 3 and neonatal infections. Emerg Infect Dis 11:103–105

    PubMed Central  PubMed  Google Scholar 

  26. Harvala H, Simmonds P (2009) Human parechovirus: biology, epidemiology and clinical significante. J Clin Virol 45:1–9

    CAS  PubMed  Google Scholar 

  27. Tyler KL (2004) Herpes simplex virus infections of the central nervous system: encephalitis and meningitis, including Mollaret’s. Herpes 11(Suppl 2):57A–64A

    PubMed  Google Scholar 

  28. Landry ML, Greenwold J, Vikram HR (2009) Herpes simplex type-2 meningitis: presentation and lack of standardized therapy. Am J Med 122:688–691

    PubMed  Google Scholar 

  29. Granerod J, Ambrose HE, Davies NW et al. (2010) UK Health Protection Agency (HPA) Aetiology of encephalitis study group. Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis 10:835–844

    PubMed  Google Scholar 

  30. Steiner I (2011) Herpes simplex virus encephalitis: new infection or reactivation? Curr Opin Neurol 24:268–274

    PubMed  Google Scholar 

  31. Zhang S, Jouanguy E, Ugolini S et al. (2007) TLR3 deficiency in patients with herpes simplex encephalitis. Science 317:1522–1527

    CAS  PubMed  Google Scholar 

  32. Casanova JL, Tardieu M, Abel L (2010) Genetic predisposition to herpetic meningo-encephalitis in children. Bull Acad Natl Med 194:915–922

    CAS  PubMed  Google Scholar 

  33. Brown ZA, Wald A, Morrow RA et al. (2003) Effect of serologic status and cesarean delivery on transmission rate of herpes simplex virus from mother to infant. JAMA 289:203–209

    PubMed  Google Scholar 

  34. Denes E, Labach C, Durox H et al. (2010) Intrathecal synthesis of specific antibodies as a marker of herpes simplex encephalitis in patients with negative PCR. Swiss Med Wkly 140:w13107

    PubMed  Google Scholar 

  35. Soong SJ, Watson NE, Caddell GR et al. (1991) Use of brain biopsy for diagnostic evaluation of patients with suspected herpes simplex encephalitis: a statistical model and its clinical implications. J Infect Dis 163:17–22

    CAS  PubMed  Google Scholar 

  36. Tebas P, Nease RF, Storch GA (1998) Use of the polymerase chain reaction in the diagnosis of herpes simplex encephalitis: a decision analysis model. Am J Med 105:287–295

    CAS  PubMed  Google Scholar 

  37. Pinninti SG, Kimberlin DW (2013) Neonatal herpes simlex virus infections. Pediatr Clin North Am 60:351–365

    PubMed  Google Scholar 

  38. Steiner I, Kennedy PG, Pachner AR (2007) The neurotropic herpes viruses: herpes simplex and varicella-zoster. Lancet Neurol 6:1015–1028

    CAS  PubMed  Google Scholar 

  39. Gershon AA, Gershon MD, Breuer J et al. (2010) Advances in the understanding of the pathogenesis and epidemiology of herpes zoster. J Clin Virol 48:52–57

    Google Scholar 

  40. Horien C, Grose C (2012) Neurovirulence of varicella and the live attenuated varicella vaccine virus. Semin Pediatr Neurol 19:124–129

    PubMed Central  PubMed  Google Scholar 

  41. Koskiniemi M, Piiparinen H, Rantalaiho T et al. (2002) Acute central nervous system complications in varicella zoster virus infections. J Clin Virol 25:293–301

    PubMed  Google Scholar 

  42. Bego MG, St Jeor S (2006) Human cytomegalovirus infections of cells of hematopoietic origin: HCMV-induced immunosuppression, immune evasion, and latency. Exp Hematol 34:555–570

    CAS  PubMed  Google Scholar 

  43. Pignatelli S, Dal Monte P, Rossini G, Landini MP (2004) Genetic polymorphisms among human citomegalovirus (HCMV) wild-type strains. Rev Med Virol 14:383–410

    CAS  PubMed  Google Scholar 

  44. Griffiths P (2004) Cytomegalovirus infection of the central nervous system. Herpes 11(Suppl 2):95A–104A

    PubMed  Google Scholar 

  45. Rafailidis PI, Mourtzoukou EG, Varboitis IC, Falagas ME (2008) Severe cytomegalovirus infection in apparently immunocompetent patients: a systematic review. Virol J 5:47

    PubMed Central  PubMed  Google Scholar 

  46. Gabrielli L, Bonasoni MP, Santini D et al. (2012) Congenital citomegalovirus infection: pattern of fetal brain damage. Clin Microbiol Infect 18:E419–E427

    CAS  PubMed  Google Scholar 

  47. Liu QF, Ling YW, Fan ZP et al. (2013) Epstein-Barr virus (EBV) load in cerebro spinal and peripheral blood of patients with EBV-associated central nervous system diseases after allogeneic hematopoietic stem cell transplantation. Transplant Infect Dis 15:379–392

    CAS  Google Scholar 

  48. Salahuddin SZ, Ablashi DV, Markham PD et al. (1986) Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders. Science 234:596–601

    CAS  PubMed  Google Scholar 

  49. De Bolle L, Naesens L, De Clercq E (2005) Update on human herpesvirus 6 biology, clinical features, and therapy. Clin Microbiol Rev 18:217–245

    PubMed Central  PubMed  Google Scholar 

  50. Revest M, Minjolle S, Veyer D et al. (2011) Detection of HHV-6 in over a thousand samples: new types of infection revealed by an analysis of positive results. J Clin Virol 51:21–24

    Google Scholar 

  51. Holden SR, Vas AL (2007) Severe encephalitis in a haematopoietic stem cell transplant recipient caused by reactivation of human herpesvirus 6 and 7. J Clin Virol 40:245–247

    PubMed  Google Scholar 

  52. Abdel Massih RC, Razonable RR (2009) Human herpesvirus 6 infections after liver transplantation. World J Gastroenterol 15:2561–2569

    PubMed Central  PubMed  Google Scholar 

  53. Pellett PE, Ablashi DV, Ambros PF et al. (2012) Chromosomally integrated human herpesvirus 6: questions and answers. Rev Med Virol 22:144–155

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Ward KN, Leong HN, Thiruchelvam AD et al. (2007) Human herpesvirus 6 DNA levels in cerebrospinal fluid due to primary infection differ from those due to chromosomal viral integration and have implications for diagnosis of encephalitis. J Clin Microbiol 45:1298–1304

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Bhaskaran A, Racsa L, Gander R et al. (2013) Interpretation of positive melecular tests of common viruses in the cerebrospinal fluid. Diagn Microbiol Infect Dis 77:236–240

    CAS  PubMed  Google Scholar 

  56. Campbell H, Andrews N, Brown KE, Miller E (2007) Review of the effect of measles vaccination on the epidemiology of SSPE. Int J Epidemiol 36:1334–1348

    CAS  PubMed  Google Scholar 

  57. Gutierrez J, Issacson RS, Koppel BS (2010) Subacute sclerosing panencephalitis: an update. Dev Med Child Neurol 52:901–907

    PubMed  Google Scholar 

  58. Padgett BL, Zu Rhein GM, Walker DL et al. (1971) Cultivation of papova-like virus from human brain with progressive multifocal leukoencephalopathy. Lancet 1:1257–1260

    CAS  PubMed  Google Scholar 

  59. Delbue S, Branchetti E, Boldorini R et al. (2008) Presence and expression of JCV early gene large T antigen in the brains of immunocompromised and immunocompetent individuals. J Med Virol 80:2147–2152

    PubMed Central  PubMed  Google Scholar 

  60. Perez-Liz G, Del Valle L, Gentilella A et al. (2008) Detection of JC virus DNA fragments but not proteins in normal brain tissue. Ann Neurol 64:379–387

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Cinque P, Koralnik IJ, Gerevini S et al. (2009) Progressive multifocal leucoencephalopathy in HIV-1 infection. Lancet Infect Dis 9:625–636

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Kleinschmidt-DeMasters BK, Tyler KL (2005) Progressive multifocal leucoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med 353:369–374

    CAS  PubMed  Google Scholar 

  63. Langer-Gould A, Athas SW, Green AJ et al. (2005) Progressive multifocal leucoencephalopathy in a patient treated with natalizumab. N Engl J Med 353:375–381

    CAS  PubMed  Google Scholar 

  64. Van Assche G, Van Ranst M, Sciot R et al. (2005) Progressive multifocal leucoencephalopathy after natalizumab therapy for Crohn’s disease. N Engl J Med 353:362–368

    PubMed  Google Scholar 

  65. Tavazzi E, Ferrante P, Khalili K (2011) Progressive multifocal leucoencephalopathy: an unexpected complication of modern therapeutic monoclonal antibodies therapies. Clin Microbiol Infect 17:1776–1780

    CAS  PubMed  Google Scholar 

  66. Goldberg SL, Pecora AL, Alter RS et al. (2002) Unusual viral infections (progressive multifocal leucoencephalopathy and cytomegalovirus disease) after high-dose chemotherapy with autolous blood stem cell rescue and peritransplantation rituximab. Blood 99:1486–1488

    CAS  PubMed  Google Scholar 

  67. Lobo LJ, Reynolds JM, Snyder LD (2013) Rituximab-associated progressive multifocal leukoencephalopathy after lung transplantation. J Hearth Lung Transplant 32:752–753

    Google Scholar 

  68. Berger JR, Aksamit AAJ, Clifford DB et al. (2013) PML diagnostic criteria. Consensus statement from AAN neuroinfectious disease section. Neurology 80:1430–1438

    PubMed Central  PubMed  Google Scholar 

  69. Ryschkewitsch CF, Jensen PN, Major EO (2013) Multiplex qPCR assay for ultra sensitive detection of JCV DNA with simultaneous identification of genotypes that discriminates non-virulent from virulent variants. J Clin Virol 57:243–248

    CAS  PubMed  Google Scholar 

  70. Tyler KL (2009) Emerging viral infections of the central nervous system: part 1. Arch Neurol 66:939–948

    PubMed Central  PubMed  Google Scholar 

  71. Tyler KL (2009) Emerging viral infections of the central nervous system. Arch Neurol 66:1065–1074

    PubMed Central  PubMed  Google Scholar 

  72. Griffin DE (2010) Emergence and re-emergence of viral diseases of the central nervous system. Prog Neurobiol 91:95–101

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Olival KJ, Daszak P (2005) The ecology of emerging neurotropic viruses. J Neurovirol 11:441–446

    PubMed  Google Scholar 

  74. Colpitts TM, Conway MJ, Montgomery RR, Fikrig E (2012) West Nile virus: biology, transmission, and human infection. Clin Microbiol Rev 25:635–648

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Smithburn KC, Hughes TP, Burke AW, Paul JH (1940) A neurotropic virus isolated from the blood of a native of Uganda. American Journal of Tropical Medicine 20:471–472

    Google Scholar 

  76. Hayes CG (2001) West Nile virus: Uganda, 1937, to New York city, 1999. Ann N Y Acad Sci 951:25–37

    CAS  PubMed  Google Scholar 

  77. Autorino GL, Battisti A, Deubel V et al. (2002) West Nile virus epidemic in horses, Tuscany region, Italy. Emerg Infect Dis 8:1372–1378

    PubMed Central  PubMed  Google Scholar 

  78. Calistri P, Giovannini A, Hubalek Z et al. (2010) Epidemiology of West Nile in Europe and in the mediterranean basin. Open Virol J 4:29–37

    PubMed Central  PubMed  Google Scholar 

  79. Barzon L, Franchin E, Squarzon L et al. (2009) Genome sequence analysis of the first human West Nile virus isolated in Italy in 2009. Euro Surveill 14(pii):19384

    PubMed  Google Scholar 

  80. Barzon L, Pacenti M, Cusinato R et al. (2011) Human cases of West Nile virus infection in North-eastern Italy, 15 June to 15 November 2010. Euro Surveill 16(pii):19949

    PubMed  Google Scholar 

  81. Rizzo C, Salcuni P, Nicoletti L et al. (2012) Epidemiological surveillance of West Nile neuroinvasive diseases in Italy, 2008 to 2011. Euro Surveill 17(pii):20172

    PubMed  Google Scholar 

  82. Spissu N, Panichi G, Montisci A, Fiore F (2013) West Nile virus outbreak in Sardinia, Italy, in 2011. J Infect Dev Ctries 7:6–9

    PubMed  Google Scholar 

  83. Calzolari M, Gaibani P, Bellini R et al. (2012) Mosquito, bird and human surveillance of West Nile and Usutu viruses in Emilia-Romagna region (Italy) in 2010. PLoS One 7:e38058

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Calzolari M, Bonilauri P, Bellini R et al. (2013) Usutu virus persistence and West Nile virus inactivity in the Emilia-Romagna region (Italy) in 2011. PLoS One 8:e63978

    CAS  PubMed Central  PubMed  Google Scholar 

  85. De Filette M, Ulbert S, Diamond M, Sanders NN (2012) Recent progress in West Nile virus diagnosis and vaccination. Vet Res 43:16

    PubMed Central  PubMed  Google Scholar 

  86. Pecorari M, Longo G, Gennari W et al. (2009) First human case of Usutu virus neuroinvasive infection, Italy, August–September 2009. Euro Surveill 14(pii):19446

    PubMed  Google Scholar 

  87. Cavrini F, Gaibani P, Longo G et al. (2009) Usutu virus infection in a patient who underwent orthotropic liver transplantation, Italy, August–September 2009. Euro Surveill 14(pii):19448

    PubMed  Google Scholar 

  88. Vazquez A, Jiménez-Clavero MA, Franco L et al. (2011) Usutu virus—potential risk of human disease in Europe. Euro Surveill 16(pii):19935

    PubMed  Google Scholar 

  89. Weissenböck H, Bakonyi T, Rossi G et al. (2013) Usutu virus Italy, 1996. Emerg Infect Dis 19:274–277

    PubMed Central  PubMed  Google Scholar 

  90. Cavrini F, Della Pepa ME, Gaibani P et al. (2011) A rapid and specific real-time RT-PCR assay to identify Usutu virus in human plasma, serum, and cerebrospinal fluid. J Clin Virol 50:221–223

    CAS  PubMed  Google Scholar 

  91. Del Amo J, Sotelo E, Fernandez-Pinero J et al. (2013) A novel quantitative multiplex real-time RT-PCR for the simultaneous detection and differentiation of West Nile virus lineages 1 and 2, and of Usutu virus. J Virol Methods 189:321–327

    PubMed  Google Scholar 

  92. Verani P, Ciufolini MG, Nicoletti L et al. (1982) Ecological and epidemiological studies of Toscana virus, an arbovirus isolated from Phlebotomus. Ann Ist Super Sanità 18:397–399

    CAS  PubMed  Google Scholar 

  93. Cusi MG, Savellini GG, Zanelli G (2010) Toscana virus epidemiology: from Italy to beyond. Open Virol J 4:22–28

    PubMed Central  PubMed  Google Scholar 

  94. Terrosi C, Olivieri R, Bianco C et al. (2009) Age-dependent seroprevalence of Toscana virus in central Italy and correlation with the clinical profile. Clin Vaccine Immunol 16:1251–1252

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Jaijakul S, Arias CA, Hossain M et al. (2012) Toscana menongoencephalitis: a comparison to other viral central nervous system infections. J Clin Virol 55:204–208

    PubMed Central  PubMed  Google Scholar 

  96. Wolfe ND, Kilbourn AM, Karesh WB et al. (2001) Sylvatic transmission of arbovirus among Bornean orangutans. Am J Trop Med Hyg 64:310–316

    CAS  PubMed  Google Scholar 

  97. Rezza G, Nicoletti L, Angelini R et al. (2007) Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840–1846

    CAS  PubMed  Google Scholar 

  98. Angelini R, Finarelli AC, Angelini P et al. (2007) An outbreak of chikungunya fever in the province of Ravenna, Italy. Euro Surveill 12:E070906.1

    CAS  PubMed  Google Scholar 

  99. Gould EA, Gallian P, De Lamballerie X, Charrel RN (2010) First cases of autochthonous dengue fever and chikungunya fever in France: from bad dream to reality! Clin Microbiol Infect 16:1702–1704

    CAS  PubMed  Google Scholar 

  100. Thiberville SD, Moyen N, Dupuis-Maguiraga L et al. (2013) Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Res 99:345–370

    CAS  PubMed  Google Scholar 

  101. Thiberville SD, Boisson V, Gaudart J et al. (2013) Chikungunya fever: a clinical and virological investigation of outpatients on Reunion Island, South-West Indian Ocean. PLoS Negl Trop Dis 7:e2004

    PubMed Central  PubMed  Google Scholar 

  102. Borgherini C, Poubeau P, Jossaume A et al. (2008) Persistent arthralgia associated with chikyngunya virus: a study of 88 adult patients on Reunion Island. Clin Infect Dis 47:469–475

    PubMed  Google Scholar 

  103. Moro ML, Grilli E, Corvetta A et al. (2012) Long-term chikungunya infection clinical manifestations after an outbreak in Italy: a prognostic cohort study. J Infect 65:165–172

    CAS  PubMed  Google Scholar 

  104. Das T, Jaffar-Bandjee MC, Hoarau JJ et al. (2010) Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus. Prog Neurobiol 91:121–129

    CAS  PubMed  Google Scholar 

  105. Kuchartz EJ, Cebula-Byrska I (2012) Chikungunya fever. Eur J Intern Med 23:325–329

    Google Scholar 

  106. Reddy V, Ravi V, Desai A et al. (2012) Utility of IgM ELISA, TaqMan real-time PCR, reverse transcription PCR,a nd RT-LAMP assay for the diagnosis of chikungunya fever. J Med Virol 84:1771–1778

    CAS  PubMed  Google Scholar 

  107. Rockx B, Winegar R, Freiberg AN (2012) Recent progress in henipavirus research: molecular biology, genetic diversity, animal models. Antiviral Res 95:135–149

    CAS  PubMed  Google Scholar 

  108. Field HE, Barrat PC, Hughes RJ et al. (2000) A fatal case of Hendra virus infection in a horse in North Queensland clinical and epidemiological features. Aust Vet J 78:279–280

    CAS  PubMed  Google Scholar 

  109. Field H, Schaaf K, Kung N et al. (2010) Hendra virus outbreak with novel clinical features, Australia. Emerg Infect Dis 16:338–340

    PubMed Central  PubMed  Google Scholar 

  110. Chua KB, Goh KJ, Wong KT et al. (1999) Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354:1257–1259

    CAS  PubMed  Google Scholar 

  111. Luby SP, Rahman M, Hossain MJ et al. (2006) Foodborne transmission of Nipah virus, Bangladesh. Emerg Infect Dis 12:1888–1894

    Google Scholar 

  112. Lo MK, Rota PA (2008) The emergence of Nipah virus, a highly pathogenic paramyxovirus. J Clin Virol 43:396–400

    CAS  PubMed  Google Scholar 

  113. Rockx B, Wang LF (2013) Zoonotic henipavirus transmission. J Clin Virol 58:354–356

    PubMed  Google Scholar 

  114. Sazzad HMS, Hossain MJ, Gurley ES et al. (2013) Nipah virus infection outbreak with nosocomial and corpse-to-human transmission, Bangladesh. Emerg Infect Dis 19:210–217

    Google Scholar 

  115. Escaffre O, Borisevich V, Rockx B (2013) Pathogenesis of Hendra and Nipah virus infections in humans. J Infect Dev Ctries 7:308–311

    PubMed  Google Scholar 

  116. Tamin A, Rota PA (2013) Current status of diagnostic methods for henipavirus. Dev Biol 135:139–145

    CAS  Google Scholar 

  117. Bale JF Jr (2012) Emerging viral infections. Semin Pediatr Neurol 19:152–157

    PubMed  Google Scholar 

  118. Wilson MR (2013) Emerging viral infections. Curr Opin Neurol 26:301–306

    CAS  PubMed  Google Scholar 

Download references

Conflitto di interessi

Nessuno.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Sensini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sensini, A., Castronari, R., Pistoni, E. et al. Infezioni virali del sistema nervoso centrale: meningoencefaliti ed encefalopatie croniche progressive. Riv Ital Med Lab 10, 63–81 (2014). https://doi.org/10.1007/s13631-014-0052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13631-014-0052-4

Parole chiave

Keywords

Navigation