Skip to main content

Advertisement

Log in

Pharmacological, nutritional, and analytical aspects of β-sitosterol: a review

  • Review
  • Published:
Oriental Pharmacy and Experimental Medicine Aims and scope Submit manuscript

Abstract

Sterols are an essential component of cell membrane of both the animal and plant cell. Cholesterol and β-sitosterol are prevalent in animals and plants respectively. β-sitosterol is biosynthesized in plants via mevalonic acid pathway. Consumption of β-sitosterol in vegetarian diet is high however it is very less absorbed. β-sitosterol competes with cholesterol for absorption due to similarity in their structure therefore is used as antihyperlipidemic agent. Pharmacological screening of β-sitosterol revealed various activities like antimicrobial, anti-inflammatory, anticancer, antifertility, angiogenic, antioxidant, immunomodulatory, antidiabetic, antinociceptive without major toxicity. Pharmacokinetics of β-sitosterol is also studied well. Many formulations have been prepared by various authors. However, there is paucity of scientific review of the pharmacology, phytochemistry and analytical methods for β-sitosterol. β-sitosterol is very common ingredient of most of the plant materials, humans are using it for different purposes and many β-sitosterol-containing products have been marketed, therefore, knowledge of its properties with scientific basis is not only of academic interest but also of those who use β-sitosterol as well. Present review compiles and discusses in details the literature on β-sitosterol focusing on its biosynthesis, pharmacology, neutraceutical aspects, toxicology, formulations and analytical methods. This review opens new perspective for the investigations of biological properties of β-sitosterol and development of new formulations for treatment of various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguirre-Hernandez E, Rosas-Acevedo H, Soto-Hernandez M, Martinez AL, Moreno J, Gonzalez-Trujano ME (2007) Bioactivity-guided isolation of β-sitosterol and some fatty acids as active compounds in the anxiolytic and sedative effects of Tilia americana Var. mexicana. Planta Med 73:1148–1155

    CAS  PubMed  Google Scholar 

  • Aherne SA, O’Brien NM (2008) Modulation of cytokine production by plant sterols in stimulated human Jurkat T cells. Mol Nutr Food Res 52:664–673

    CAS  PubMed  Google Scholar 

  • Ahmida HS, Bertucci P, Franzo L, Massoud R, Cortese C, Lala A, Federici G (2006) Simultaneous determination of plasmatic phytosterols and cholesterol precursors using gas chromatography–mass spectrometry (GC-MS) with selective ion monitoring (SIM). J Chromatogr B Anal Technol Biomed Life Sci 842:43–47

    CAS  Google Scholar 

  • Ajaiyeoba EO, Onocha PA, Nwozo SO, Sama W (2003) Antimicrobial and cytotoxicity evaluation of Buchholzia coriacea stem bark. Fitoterapia 74:706–709

    CAS  PubMed  Google Scholar 

  • Aringer L, Eneroth P (1974) Formation and metabolism in vitro of 5,6-epoxides of cholesterol and β-sitosterol. J Lipid Res 15:389–398

    CAS  PubMed  Google Scholar 

  • Aringer L, Eneroth P, Nordstrom L (1976) Side chain hydroxylation of cholesterol, campesterol and β-sitosterol in rat liver mitochondria. J Lipid Res 17:263–272

    CAS  PubMed  Google Scholar 

  • Arrieta J, Benitez J, Flores E, Castillo C, Navarrete A (2003) Purification of gastroprotective triterpenoids from the stem bark of Amphipterygium adstringens; role of prostaglandins, sulfhydryls, nitric oxide and capsaicin-sensitive neurons. Planta Med 69:905–909

    CAS  PubMed  Google Scholar 

  • Awad AB, Chen YC, Fink CS, Hennessey T (1996) β-sitosterol inhibits HT-29 human colon cancer cell growth and alters membrane lipids. Anticancer Res 16(5A):2797–2804

    CAS  PubMed  Google Scholar 

  • Awad AB, von-Holtz RL, Cone JP, Fink CS, Chen YC (1998) β-sitosterol inhibits growth of HT-29 human colon cancer cells by activating the sphingomyelin cycle. Anticancer Res 18(1A):471–473

    CAS  PubMed  Google Scholar 

  • Awad AB, Downie AC, Fink CS (2000a) Inhibition of growth and stimulation of apoptosis by β-sitosterol treatment of MDA-MB-231 human breast cancer cells in culture. Int J Mol Med 5:541–545

    CAS  PubMed  Google Scholar 

  • Awad AB, Gan Y, Fink CS (2000b) Effect of β-sitosterol, a plant sterol, on growth, protein phosphatase 2A, and phospholipase D in LNCaP cells. Nutr Cancer 36:74–78

    CAS  PubMed  Google Scholar 

  • Awad AB, Fink CS, Williams H, Kim U (2001a) In vitro and in vivo (SCID mice) effects of phytosterols on the growth and dissemination of human prostate cancer PC-3 cells. Eur J Cancer Prev 10:507–513

    CAS  PubMed  Google Scholar 

  • Awad AB, Smith AJ, Fink CS (2001b) Plant sterols regulate rat vascular smooth muscle cell growth and prostacyclin release in culture. Prostaglandins Leukot Essent Fat Acids 64:323–330

    CAS  Google Scholar 

  • Awad AB, Roy R, Fink CS (2003) β-sitosterol, a plant sterol, induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells. Oncol Rep 10:497–500

    CAS  PubMed  Google Scholar 

  • Awad AB, Burr AT, Fink CS (2005a) Effect of resveratrol and β-sitosterol in combination on reactive oxygen species and prostaglandin release by PC-3 cells. Prostaglandins Leukot Essent Fat Acids 72:219–226

    CAS  Google Scholar 

  • Awad AB, Fink CS, Trautwein EA, Ntanios FY (2005b) β-sitosterol stimulates ceramide metabolism in differentiated Caco2 cells. J Nutr Biochem 16:650–655

    CAS  PubMed  Google Scholar 

  • Awad AB, Chinnam M, Fink CS, Bradford PG (2007) β-sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine 14:747–754

    CAS  PubMed  Google Scholar 

  • Awad AB, Barta SL, Fink CS, Bradford PG (2008) β-Sitosterol enhances tamoxifen effectiveness on breast cancer cells by affecting ceramide metabolism. Mol Nutr Food Res 52:419–426

    CAS  PubMed  Google Scholar 

  • Backhouse N, Rosales L, Apablaza C, Goity L, Erazo S, Negrete R, Theodoluz C, Rodríguez J, Delporte C (2008) Analgesic, anti-inflammatory and antioxidant properties of Buddleja globosa, Buddlejaceae. J Ethnopharmacol 116:263–269

    CAS  PubMed  Google Scholar 

  • Bao L, Li Y, Deng SX, Landry D, Tabas I (2007) Sitosterol-containing lipoproteins trigger free sterol-induced caspase-independent death in ACAT-competent macrophages. Autophagy 3:38–41

    Google Scholar 

  • Baskar AA, Ignacimuthu S, Paulraj GM, Al Numair KS (2010) Chemopreventive potential of β-sitosterol in experimental colon cancer model–an in vitro and in vivo study. BMC Complement Altern Med 10:24

    PubMed Central  PubMed  Google Scholar 

  • Becker M, Staab D, Von-Bergman K (1992) Long-term treatment of severe familial hypercholesterolemia in children: effect of sitosterol and bezafibrate. Pediatrics 89:138–142

    CAS  PubMed  Google Scholar 

  • Bedner M, Schantz MM, Sander LC, Sharpless KE (2008) Development of liquid chromatographic methods for the determination of phytosterols in Standard Reference Materials containing saw palmetto. J Chromatogr A 1192:74–80

    CAS  PubMed  Google Scholar 

  • Berger A, Jones PJ, Abumweis SS (2004) Plant sterols: factors affecting their efficacy and safety as functional food ingredients. Lipids Health Dis. Open assess BioMed central (http://www.lipdworld.com/content/3/1/5)

  • Berges RR, Windeler J, Trampisch HJ, Senge T (1995) Randomised, placebo-controlled, double-blind clinical trial of β-sitosterol in patients with benign prostatic hyperplasia. β-sitosterol Study Group. Lancet 345:1529–1532

    CAS  PubMed  Google Scholar 

  • Bhattacharyya AK (1981) Uptake and esterification of plant sterols by rat small intestine. Am J Physiol 240:G50–G55

    CAS  PubMed  Google Scholar 

  • Bhattacharyya AK, Connor WE (1974) Β-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J Clin Invest 53:1033–1043

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhattacharyya AK, Connor WE, Lin DS (1983) The origin of plant sterols in the skin surface lipids in humans: from diet to plasma to skin. J Investig Dermatol 80:294–296

    CAS  PubMed  Google Scholar 

  • Bouic PJ, Etsebeth S, Liebenberg RW, Albrecht CF, Pegel K, Van-Jaarsveld PP (1996) β-Sitosterol and β-sitosterol glucoside stimulate human peripheral blood lymphocyte proliferation: implications for their use as an immunomodulatory vitamin combination. Int J Immunopharmacol 18:693–700

    CAS  PubMed  Google Scholar 

  • Breu W, Hagenlocher M, Redl K, Tittel G, Stadler F, Wagner H (1992) Anti-inflammatory activity of sabal fruit extracts prepared with supercritical carbon dioxide. In vitro antagonists of cyclooxygenase and 5-lipoxygenase metabolism. Arzneimittelforschung 42:547–551

    CAS  PubMed  Google Scholar 

  • Brimson JM, Brimson SJ, Brimson CA, Rakkhitawatthana V, Tencomnao T (2012) Rhinacanthus nasutus extracts prevent glutamate and amyloid-β neurotoxicity in HT-22 mouse hippocampal cells: possible active compounds include lupeol, stigmasterol and β-sitosterol. Int J Mol Sci 13(4):5074–5097

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bustos P, Duffau C, Pacheco C, Ulloa N (2008) β-sitosterol modulation of monocyte-endothelial cell interaction: a comparison to female hormones. Maturitas 60:202–208

    CAS  PubMed  Google Scholar 

  • Careri M, Elviri L, Mangia A (2001) Liquid chromatography-UV determination and liquid chromatography-atmospheric pressure chemical ionization mass spectrometric characterization of sitosterol and stigmasterol in soybean oil. J Chromatogr A 935:249–257

    CAS  PubMed  Google Scholar 

  • Carilla E, Briley M, Fauran F, Sultan C, Duvilliers C (1984) Binding of Permixon, a new treatment for prostatic benign hyperplasia, to the cytosolic androgen receptor in the rat prostate. J Steroid Biochem 20:521–523

    CAS  PubMed  Google Scholar 

  • Castelli F, Sarpietro MG, Micieli D, Trombetta D, Saija A (2006) Differential scanning calorimetry evidence of the enhancement of β-sitosterol absorption across biological membranes mediated by β-cyclodextrins. J Agric Food Chem 54:10228–10233

    CAS  PubMed  Google Scholar 

  • Chai JW, Lim SL, Kanthimathi MS, Kuppusamy UR (2011) Gene regulation in β-sitosterol-mediated stimulation of adipogenesis, glucose uptake, and lipid mobilization in rat primary adipocytes. Genes Nutr 6(2):181–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chattopadhyay D, Dungdung SR, Das K, Saha S, Mandal AB, Majumder GC (2005a) Sperm motility inhibiting activity of a phytosterol from Alstonia macrophylla Wall ex A. DC. leaf extract: a tribal medicine. Indian J Exp Biol 43:1104–1109

    CAS  PubMed  Google Scholar 

  • Chattopadhyay D, Dungdung SR, Mandal AB, Majumder GC (2005b) A potent sperm motility-inhibiting activity of bioflavonoids from an ethnomedicine of Onge, Alstonia macrophylla Wall ex A. DC, leaf extract. Contraception 71:372–378

    CAS  PubMed  Google Scholar 

  • Chen Q, Steinhauer L, Hammerlindl J, Keller W, Zou J (2007) Biosynthesis of phytosterol esters: ideintification of a sterol O-acyltransferase in Arabidopsis. Plant Physiol 145:974–984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Child P, Kuksis A (1980) Uptake and transport of sterols by isolated villus cells of rat jejunum. Can J Biochem 58:1215–1222

    CAS  PubMed  Google Scholar 

  • Child P, Kuksis A (1983) Critical role of ring structure in the differential uptake of cholesterol and plant sterols by membrane preparations in vitro. J Lipid Res 24:1196–1209

    CAS  PubMed  Google Scholar 

  • Choi S, Kim KW, Choi JS, Han ST, Park YI, Lee SK, Kim JS, Chung MH (2002) Angiogenic activity of β-sitosterol in the ischaemia/reperfusion-damaged brain of Mongolian gerbil. Planta Med 68:330–335

    CAS  PubMed  Google Scholar 

  • Choi YH, Kong KR, Kim YA, Jung KO, Kil JH, Rhee SH, Park KY (2003) Induction of Bax and activation of caspases during β-sitosterol-mediated apoptosis in human colon cancer cells. Int J Oncol 23:1657–1662

    CAS  PubMed  Google Scholar 

  • Choi JN, Choi YH, Lee JM, Noh IC, Park JW, Choi WS, Choi JH (2012) Anti-inflammatory effects of β-sitosterol-β-D-glucoside from Trachelospermum jasminoides (Apocynaceae) in lipopolysaccharide-stimulated RAW 264.7 murine macrophages. Nat Prod Res 26(24):2340–2343

    CAS  PubMed  Google Scholar 

  • Christiansen LI, Rantanen JT, von-Bonsdorff AK, Karjalainen MA, Yliruusi JK (2002) A novel method of producing a microcrystalline β-sitosterol suspension in oil. Eur J Pharm Sci 15:261–269

    CAS  PubMed  Google Scholar 

  • Cui J, Huang L, Fan L, Zhou A (2008) A facile and efficient synthesis of some (6E)-hydroximino-4-en-3-one steroids, steroidal oximes from Cinachyrella spp. sponges. Steroids 73:252–256

    CAS  PubMed  Google Scholar 

  • Cummings AM, Laws SC (2000) Assessment of estrogenicity by using the delayed implanting rat model and examples. Reprod Toxicol 14:111–117

    CAS  PubMed  Google Scholar 

  • Datsenko ZM, Volkov GL, Govseva NN, Nikiforova TN (1981) Lipid composition and activity of certain enzymes in membranes of intestinal epithelium microvilli in rats with experimental hypercholesterinemia. Ukr Biokhim Zh 53:74–79

    CAS  PubMed  Google Scholar 

  • Datsenko ZM, Kholodova ID, Kokunin VA, Klimashevskii VM, Perederei OF (1984) Effect of β-sitosterol incorporated into liposomes on several indicators of lipid metabolism in experimental hypercholesteremia in rats. Vopr Med Khim 30:33–38

    CAS  PubMed  Google Scholar 

  • De Souza MT, Buzzi FC, Cechinel-Filho V, Hess S, Della-Monache F, Niero R (2007) Phytochemical and antinociceptive properties of Matayba elaeagnoides Radlk Barks. Z Naturforsch [C] 62:550–554

    Google Scholar 

  • Dearman RJ, Alcocer MJ, Kimber I (2007) Influence of plant lipids on immune responses in mice to the major Brazil nut allergen Ber e 1. Clin Exp Allergy 37:582–591

    CAS  PubMed  Google Scholar 

  • Deschner EE, Cohen BI, Raicht RF (1982) The kinetics of the protective effect of β-sitosterol against MNU-induced colonic neoplasia. J Cancer Res Clin Oncol 103:49–54

    CAS  PubMed  Google Scholar 

  • Duchateau G, Cochrane B, Windebank S, Herudzinska J, Sanghera D, Burian A, Müller M, Zeitlinger M, Lappin G (2012) Absolute oral bioavailability and metabolic turnover of β-sitosterol in healthy subjects. Drug Metab Dispos 40(10):2026–2030

    CAS  PubMed  Google Scholar 

  • Erazo S, Rocco G, Zaldivar M, Delporte C, Backhouse N, Castro C, Belmonte E, Delle-Monache F, Garcia R (2008) Active metabolites from Dunalia spinosa resinous exudates. Z Naturforsch [C] 63:492–496

    CAS  Google Scholar 

  • Field FJ, Mathur SN (1983) β-sitosterol: esterification by intestinal acylcoenzyme A: cholesterol acyltransferase (ACAT) and its effect on cholesterol esterification. J Lipid Res 24:409–417

    CAS  PubMed  Google Scholar 

  • Field FJ, Born E, Mathur SN (1997) Effect of micellar β-sitosterol on cholesterol metabolism in CaCo-2 cells. J Lipid Res 38:348–360

    CAS  PubMed  Google Scholar 

  • Gao Y, Xu H, Lu Z, Xu Z (2009) Quantitative determination of steroids in the fruiting bodies and submerged-cultured mycelia of Inonotus obliquus. Se Pu 27:745–749

    CAS  PubMed  Google Scholar 

  • Gerson T, Shorland FB, Dunckley GG (1965) The effect of β-sitosterol on the metabolism of cholesterol and lipids in rats on a diet containing coconut oil. Biochem J 96:399–403

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilani AH, Khan AU, Raoof M, Ghayur MN, Siddiqui BS, Vohra W, Begum S (2008) Gastrointestinal, selective airways and urinary bladder relaxant effects of Hyoscyamus niger are mediated through dual blockade of muscarinic receptors and Ca++ channels. Fundam Clin Pharmacol 22:87–99

    CAS  PubMed  Google Scholar 

  • Goad LJ, Goodwin TW (1966) The biosynthesis of sterols in higher plants. Biochem J 99:735–746

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gomes A, Saha A, Chatterjee I, Chakravarty AK (2007) Viper and cobra venom neutralization by β-sitosterol and stigmasterol isolated from the root extract of Pluchea indica Less. (Asteraceae). Phytomedicine 14:637–643

    CAS  PubMed  Google Scholar 

  • Gomez MA, Saenz MT, Garcia MD, Fernandez MA (1999) Study of the topical anti-inflammatory activity of Achillea ageratum on chronic and acute inflammation models. Z Naturforsch [C] 54:937–941

    CAS  Google Scholar 

  • Gomez MA, Garcia MD, Saenz MT (2001) Cytostatic activity of Achillea ageratum L. Phytother Res 15:633–634

    CAS  PubMed  Google Scholar 

  • Goncalves A, Gleize B, Bott R, Nowicki M, Amiot MJ, Lairon D, Borel P, Reboul E (2011) Phytosterols can impair vitamin D intestinal absorption in vitro and in mice. Mol Nutr Food Res 55(S2):S303–S311

    CAS  PubMed  Google Scholar 

  • Goswami SK, Frey CF (1976) Effect of β-sitosterol on cholesterol-cholic acid-induced gallstone formation in mice. Am J Gastroenterol 65:305–310

    CAS  PubMed  Google Scholar 

  • Gupta R, Sharma AK, Dobhal MP, Sharma MC, Gupta RS (2011) Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. J Diabetes 3(1):29–37

    CAS  PubMed  Google Scholar 

  • Hassan AS, Gallon LS, Yunker RL, Subbiah MT (1982) Effect of feeding β-sitosterol alone or in combination with cholestyramine during early life on subsequent response to cholesterol challenge in adult life in guinea-pigs. Br J Nutr 48:443–450

    CAS  PubMed  Google Scholar 

  • Hasunuma T, Takeno S, Hayashi S, Sendai M, Bamba T, Yoshimura S, Tomizawa K, Fukusaki E, Miyake C (2008) Overexpression of 1-Deoxy-D-xylulose-5-phosphate reductoisomerase gene in chloroplast contributes to increment of isoprenoid production. J Biosci Bioeng 105:518–526

    CAS  PubMed  Google Scholar 

  • Hayashi E, Amuro Y, Endo T, Yamamoto H, Miyamoto M, Kishimoto S (1986) Fecal bile acids and neutral sterols in rats with spontaneous colon cancer. Int J Cancer 37:629–632

    CAS  PubMed  Google Scholar 

  • Heinemann T, Kullak-Ublick GA, Pietruck B, Von-Bergmann K (1991) Mechanisms of action of plant sterols on inhibition of cholesterol absorption. Comparison of sitosterol and sitostanol. Eur J Clin Pharmacol 40(Suppl 1):S59–S63

    CAS  PubMed  Google Scholar 

  • Hoffmann A, Klocking HP (1988) Influence of β-sitosterol on the fibrinolytic potential in rabbits. Folia Haematol Int Mag Klin Morphol Blutforsch 115:189–196

    CAS  PubMed  Google Scholar 

  • Huo Y, Guo C, Zhang QY, Chen WS, Zheng HC, Rahman K, Qin LP (2007) Antinociceptive activity and chemical composition of constituents from Caragana microphylla seeds. Phytomedicine 14:143–146

    CAS  PubMed  Google Scholar 

  • Ikeda I, Sugano M (1983) Some aspects of mechanism of inhibition of cholesterol absorption by β-sitosterol. Biochim Biophys Acta 732:651–658

    CAS  PubMed  Google Scholar 

  • Ikeda I, Kawasaki A, Samezima K, Sugano M (1981) Antihypercholesterolemic activity of β-sitostanol in rabbits. J Nutr Sci Vitaminol (Tokyo) 27:243–251

    CAS  Google Scholar 

  • Ikeda I, Nakashima-Yoshida K, Sugano M (1985) Effects of cycloartenol on absorption and serum levels of cholesterol in rats. J Nutr Sci Vitaminol (Tokyo) 31:375–384

    CAS  Google Scholar 

  • Ikeda I, Tanaka K, Sugano M, Vahouny GV, Gallo LL (1988) Inhibition of cholesterol absorption in rats by plant sterols. J Lipid Res 29:1573–1582

    CAS  PubMed  Google Scholar 

  • Imanaka H, Koide H, Shimizu K, Asai T, Kinouchi-Shimizu N, Ishikado A, Makino T, Oku N (2008) Chemoprevention of tumor metastasis by liposomal β-sitosterol intake. Biol Pharm Bull 31:400–404

    CAS  PubMed  Google Scholar 

  • Ivorra MD, D’Ocon MP, Paya M, Villar A (1988) Antihyperglycemic and insulin-releasing effects of β-sitosterol 3-β-D-glucoside and its aglycone, β-sitosterol. Arch Int Pharmacodyn Ther 296:224–231

    CAS  PubMed  Google Scholar 

  • Ivorra MD, Paya M, Villar A (1990) Effect of β-sitosterol-3-β-D-glucoside on insulin secretion in vivo in diabetic rats and in vitro in isolated rat islets of Langerhans. Pharmazie 45:271–273

    CAS  PubMed  Google Scholar 

  • Jansen PJ, Lutjohann D, Abildayeva K, Vanmierlo T, Plosch T, Plat J, von-Bergmann K, Groen AK, Ramaekers FC, Kuipers F, Mulder M (2006) Dietary plant sterols accumulate in the brain. Biochim Biophys Acta 1761:445–453

    CAS  PubMed  Google Scholar 

  • Jayaprakasha GK, Mandadi KK, Poulose SM, Jadegoud Y, Nagana-Gowda GA, Patil BS (2007) Inhibition of colon cancer cell growth and antioxidant activity of bioactive compounds from Poncirus trifoliata (L.) Raf. Bioorg Med Chem 15:4923–4932

    CAS  PubMed  Google Scholar 

  • Jimenez-Escrig A, Santos-Hidalgo AB, Saura-Calixto F (2006) Common sources and estimated intake of plant sterols in the Spanish diet. J Agric Food Chem 54:3462–3471

    CAS  PubMed  Google Scholar 

  • Jin JL, Lee S, Lee YY, Kim JM, Heo JE, Yun-Choi HS (2004) Platelet anti-aggregating triterpenoids from the leaves of Acanthopanax senticosus and the fruits of A. sessiliflorus. Planta Med 70:564–566

    CAS  PubMed  Google Scholar 

  • Jin W, Min BS, Lee J, Thuong PT, Lee HK, Song K, Seong YH, Bae K (2007) Isolation of constituents and anti-complement activity from Acer okamotoanum. Arch Pharm Res 30:172–176

    CAS  PubMed  Google Scholar 

  • Jourdain C, Tenca G, Deguercy A, Troplin P, Poelman D (2006) In-vitro effects of polyphenols from cocoa and β-sitosterol on the growth of human prostate cancer and normal cells. Eur J Cancer Prev 15:353–361

    CAS  PubMed  Google Scholar 

  • Ju YH, Clausen LM, Allred KF, Almada AL, Helferich WG (2004) β-sitosterol, β-sitosterol glucoside, and a mixture of β-sitosterol and β-sitosterol glucoside modulate the growth of estrogen-responsive breast cancer cells in vitro and in ovariectomized athymic mice. J Nutr 134:1145–1151

    CAS  PubMed  Google Scholar 

  • Kaffarnik H, Muhlfellner G, Muhlfellner O, Schneider J, Hausmann L, Zofel P, Schubotz R, Fuchs F (1977) β-sitosterin in the treatment of essential type II hyperlipoproteinemias. Fortschr Med 95:2785–2787

    CAS  PubMed  Google Scholar 

  • Kanokmedhakul K, Kanokmedhakul S, Phatchana R (2005) Biological activity of anthraquinones and triterpenoids from prismatomeris fragrans. J Ethnopharmacol 100:284–288

    CAS  PubMed  Google Scholar 

  • Kassen A, Berges R, Senge T (2000) Effect of β-sitosterol on transforming growth factor- β-1 expression and translocation protein kinase Cα in human prostate stromal cells in vitro. Eur Urol 37:735–741

    CAS  PubMed  Google Scholar 

  • Kassis AN, Vanstone CA, AbuMweis SS, Jones PJ (2008) Efficacy of plant sterols is not influenced by dietary cholesterol intake in hypercholesterolemic individuals. Metabolism 57:339–346

    CAS  PubMed  Google Scholar 

  • Kim SH, Shin DS, Oh MN, Chung SC, Lee JS, Chang IM, Oh KB (2003) Inhibition of sortase, a bacterial surface protein anchoring transpeptidase, by β-sitosterol-3-O-glucopyranoside from Fritillaria verticillata. Biosci Biotechnol Biochem 67:2477–2479

    CAS  PubMed  Google Scholar 

  • Klein R (2004) Phytoecdysteroids. J Am Herbalists Guild. Fall/Winter 18–28

  • Klingberg S, Andersson H, Mulligan A, Bhaniani A, Welch A, Bingham S, Khaw KT, Andersson S, Ellegard L (2008) Food sources of plant sterols in the EPIC Norfolk population. Eur J Clin Nutr 62:695–703

    CAS  PubMed  Google Scholar 

  • Klippel KF, Hiltl DM, Schipp B (1997) A multicentric, placebo-controlled, double-blind clinical trial of β-sitosterol (phytosterol) for the treatment of benign prostatic hyperplasia. German BPH-Phyto Study group. Br J Urol 80:427–432

    CAS  PubMed  Google Scholar 

  • Kongduang D, Wungsintaweekul J, De-Eknamkul W (2008) Biosynthesis of β-sitosterol and stigmasterol proceeds exclusively via the mevalonate pathway in cell suspension culture of Croton stellatopilosus. Tetrahedron Lett 49:4067–2072

    CAS  Google Scholar 

  • Lee YK, Woo MH, Kim CH, Kim Y, Lee SH, Jeon BS, Chang HW, Son JK (2007) Two new benzofurans from Gastrodia elata and their DNA topoisomerases I and II inhibitory activities. Planta Med 73:1287–1291

    CAS  PubMed  Google Scholar 

  • Lee IA, Kim EJ, Kim DH (2012) Inhibitory effect of β-sitosterol on TNBS-induced colitis in mice. Planta Med 78(9):896–898

    CAS  PubMed  Google Scholar 

  • Leusch FD, MacLatchy DL (2003) In vivo implants of β-sitosterol cause reductions of reactive cholesterol pools in mitochondria isolated from gonads of male goldfish (Carassius auratus). Gen Comp Endocrinol 134:255–263

    CAS  PubMed  Google Scholar 

  • Li CR, Zhou Z, Lin RX, Zhu D, Sun YN, Tian LL, Li L, Gao Y, Wang SQ (2007) β-sitosterol decreases irradiation-induced thymocyte early damage by regulation of the intracellular redox balance and maintenance of mitochondrial membrane stability. J Cell Biochem 102:748–758

    CAS  PubMed  Google Scholar 

  • Li WH, Chang ST, Chang SC, Chang HT (2008) Isolation of antibacterial diterpenoids from Cryptomeria japonica bark. Nat Prod Res 22:1085–1093

    CAS  PubMed  Google Scholar 

  • Li R, Jia CS, Yue L, Zhang XM, Xia QY, Zhao SL, Feng B, Zhong F, Chen WJ (2010) Lipase-catalyzed synthesis of conjugated linoleyl β-sitosterol and its cholesterol-lowering properties in mice. J Agric Food Chem 58:1898–1902

    CAS  PubMed  Google Scholar 

  • Li M, Zhou L, Yang D, Li T, Li W (2012) Biochemical composition and antioxidant capacity of extracts from Podophyllum hexandrum rhizome. BMC Complement Altern Med 12:263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liz R, Zanatta L, Dos Reis GO, Horst H, Pizzolatti MG, Silva FR, Frode TS (2013) Acute effect of β-sitosterol on calcium uptake mediates anti-inflammatory effect in murine activated neutrophils. J Pharm Pharmacol 65(1):115–122

    CAS  PubMed  Google Scholar 

  • Loizou S, Lekakis I, Chrousos GP, Moutsatsou P (2010) β-sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol Nutr Food Res 54:551–558

    CAS  PubMed  Google Scholar 

  • Lopez-Rubalcava C, Pina-Medina B, Estrada-Reyes R, Heinze G, Martínez-Vazquez M (2006) Anxiolytic-like actions of the hexane extract from leaves of Annona cherimolia in two anxiety paradigms: possible involvement of the GABA/benzodiazepine receptor complex. Life Sci 78:730–737

    CAS  PubMed  Google Scholar 

  • Maguire L, Konoplyannikov M, Ford A, Maguire AR, O’Brien NM (2003) Comparison of the cytotoxic effects of β-sitosterol oxides and a cholesterol oxide, 7 β-hydroxycholesterol, in cultured mammalian cells. Br J Nutr 90:767–775

    CAS  PubMed  Google Scholar 

  • Mahajan SG, Mehta AA (2011) Suppression of ovalbumin-induced Th2-driven airway inflammation by β-sitosterol in a guinea pig model of asthma. Eur J Pharmacol 650(1):458–464

    CAS  PubMed  Google Scholar 

  • Maitani Y, Nakamura K, Suenaga H, Kamata K, Takayama K, Nagai T (2000) The enhancing effect of soybean-derived sterylglucoside and β-sitosterol-β-D-glucoside on nasal absorption in rabbits. Int J Pharm 200:17–26

    CAS  PubMed  Google Scholar 

  • Malini T, Vanithakumari G (1990) Rat toxicity studies with β-sitosterol. J Ethnopharmacol 28:221–234

    CAS  PubMed  Google Scholar 

  • Malini T, Vanithakumari G (1991) Antifertility effects of β-sitosterol in male albino rats. J Ethnopharmacol 35:149–153

    CAS  PubMed  Google Scholar 

  • Malini T, Vanithakumari G (1992) Comparative study of the effects of β-sitosterol, estradiol and progesterone on selected biochemical parameters of the uterus of ovariectomised rats. J Ethnopharmacol 36:51–55

    CAS  PubMed  Google Scholar 

  • Malini T, Vanithakumari G (1993) Effect of β-sitosterol on uterine biochemistry: a comparative study with estradiol and progesterone. Biochem Mol Biol Int 31:659–668

    CAS  PubMed  Google Scholar 

  • Mannucci L, Guardamagna O, Bertucci P, Pisciotta L, Liberatoscioli L, Bertolini S, Irace C, Gnasso A, Federici G, Cortese C (2007) β-sitosterolaemia: a new nonsense mutation in the ABCG5 gene. Eur J Clin Investig 37:997–1000

    CAS  Google Scholar 

  • Martins CM, Fonseca FA, Ballus CA, Figueiredo-Neto AM, Meinhart AD, Teixeira de Godoy H, Izar MC (2013) Common sources and composition of phytosterols and their estimated intake by the population in the city of São Paulo, Brazil. Nutrition 29(6):865–871

    CAS  PubMed  Google Scholar 

  • Matos MF, Leite LI, Brustolim D, de Siqueira JM, Carollo CA, Hellmann AR, Pereira NF, da Silva DB (2006) Antineoplastic activity of selected constituents of Duguetia glabriuscula. Fitoterapia 77:227–229

    CAS  PubMed  Google Scholar 

  • Mattson FH, Grundy SM, Crouse JR (1982) Optimizing the effect of plant sterols on cholesterol absorption in man. Am J Clin Nutr 35:697–700

    CAS  PubMed  Google Scholar 

  • Mavar-Manga H, Haddad M, Pieters L, Baccelli C, Penge A, Quetin-Leclercq J (2008) Anti-inflammatory compounds from leaves and root bark of Alchornea cordifolia (Schumach. & Thonn.) Mull. Arg. J Ethnopharmacol 115:25–29

    CAS  PubMed  Google Scholar 

  • Melnikov SM, Seijen ten Hoorn JW, Eijkelenboom AP (2004) Effect of phytosterols and phytostanols on the solubilization of cholesterol by dietary mixed micelles: an in vitro study. Chem Phys Lipids 127:121–141

    CAS  Google Scholar 

  • Miettinen TA, Tarpila S (1978) Fecal β-sitosterol in patients with diverticular disease of the colon and in vegetarians. Scand J Gastroenterol 13:573–576

    CAS  PubMed  Google Scholar 

  • Mironova VN, Datsenko ZM, Kokunin VA, Kalashnikova LA (1984) Hypolipidemic action of liposome-incorporated β-sitosterol on rats. Farmakol Toksikol 47:71–74

    CAS  PubMed  Google Scholar 

  • Mohanana PV, Dev KS (1998) Toxicological evaluation of sobatum. Cancer Lett 127:135–140

    Google Scholar 

  • Monu E, Blank G, Holley R, Zawistowski J (2008) Phytosterol effects on milk and yogurt microflora. J Food Sci 73:M121–M126

    CAS  PubMed  Google Scholar 

  • Moon EJ, Lee YM, Lee OH, Lee MJ, Lee SK, Chung MH, Park YI, Sung CK, Choi JS, Kim KW (1999) A novel angiogenic factor derived from Aloe vera gel: β-sitosterol, a plant sterol. Angiogenesis 3:117–123

    CAS  PubMed  Google Scholar 

  • Moon DO, Lee KJ, Choi YH, Kim GY (2007) β-sitosterol-induced-apoptosis is mediated by the activation of ERK and the downregulation of Akt in MCA-102 murine fibrosarcoma cells. Int Immunopharmacol 7:1044–1053

    CAS  PubMed  Google Scholar 

  • Moon DO, Kim MO, Choi YH, Kim GY (2008) β-sitosterol induces G2/M arrest, endoreduplication, and apoptosis through the Bcl-2 and PI3K/Akt signaling pathways. Cancer Lett 264:181–191

    CAS  PubMed  Google Scholar 

  • Morikawa T, Mizutani M, Ohta D (2006) Cytochrome P450 subfamily CYP710A genes encode sterol C-22 desaturase in plants. Biochem Soc Trans 34(Pt 6):1202–1205

    CAS  PubMed  Google Scholar 

  • Motamed-Khorasani A, Cheung AP, Lee CY (2000) Cholesterol inhibitory effects on human sperm-induced acrosome reaction. J Androl 21:586–594

    CAS  PubMed  Google Scholar 

  • Murphy EA, Rowsell HC, Mustard JF (1973) The effects of sitosterol on serum cholesterol, platelet economy, thrombogenesis and atherosclerosis in the rabbit. Atherosclerosis 17(2):257–268

    CAS  PubMed  Google Scholar 

  • Nagy K, Jakab A, Pollreisz F, Bongiorno D, Ceraulo L, Averna MR, Noto D, Vekey K (2006) Analysis of sterols by high-performance liquid chromatography/mass spectrometry combined with chemometrics. Rapid Commun Mass Spectrom 20:2433–2440

    CAS  PubMed  Google Scholar 

  • Nair PP, Turjman N, Kessie G, Calkins B, Goodman GT, Davidovitz H, Nimmagadda G (1984) Diet, nutrition intake, and metabolism in populations at high and low risk for colon cancer. Dietary cholesterol, β-sitosterol, and stigmasterol. Am J Clin Nutr 40(4 Suppl):927–930

    CAS  PubMed  Google Scholar 

  • Nair VD, Kanfer I, Hoogmartens J (2006) Determination of stigmasterol, β-sitosterol and stigmastanol in oral dosage forms using high performance liquid chromatography with evaporative light scattering detection. J Pharm Biomed Anal 41:731–737

    CAS  PubMed  Google Scholar 

  • Nakamura K, Takayama K, Nagai T, Maitani Y (2003) Regional intestinal absorption of FITC-dextran 4,400 with nanoparticles based on β-sitosterol-β-D-glucoside in rats. J Pharm Sci 92:311–318

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Yoshikawa N, Hiroki I, Sato K, Ohtsuki K, Chang CC, Upham BL, Trosko JE (2005) β-sitosterol from psyllium seed husk (Plantago ovata Forsk) restores gap junctional intercellular communication in Ha-ras transfected rat liver cells. Nutr Cancer 51:218–225

    CAS  PubMed  Google Scholar 

  • Navarrete A, Trejo-Miranda JL, Reyes-Trejo L (2002) Principles of root bark of Hippocratea excelsa (Hippocrataceae) with gastroprotective activity. J Ethnopharmacol 79:383–388

    PubMed  Google Scholar 

  • Navarro A, De las Heras B, Villar A (2001) Anti-inflammatory and immunomodulating properties of a sterol fraction from Sideritis foetens Clem. Biol Pharm Bull 24:470–473

    CAS  PubMed  Google Scholar 

  • Nevala R, Korpela R, Vapaatalo H (1998) Plant derived estrogens relax rat mesenteric artery in vitro. Life Sci 63:95–100

    Google Scholar 

  • Nieminen P, Polonen I, Ikonen K, Maattanen M, Mustonen AM (2008) Evaluation of reproductive safety of β-sitosterol on the American mink (Neovison vison). Chemosphere 71:493–499

    CAS  PubMed  Google Scholar 

  • Nieminen P, Polonen I, Mustonen AM (2010) Increased reproductive success in the white American mink (Neovison vison) with chronic dietary β-sitosterol supplement. Anim Reprod Sci 119:287–292

    CAS  PubMed  Google Scholar 

  • Nigro ND, Bull AW, Wilson PS, Soullier BK, Alousi MA (1982) Combined inhibitors of carcinogenesis: effect on azoxymethane-induced intestinal cancer in rats. J Natl Cancer Inst 69:103–107

    CAS  PubMed  Google Scholar 

  • Normen AL, Brants HA, Voorrips LE, Andersson HA, van den Brandt PA, Goldbohm RA (2001) Plant sterol intakes and colorectal cancer risk in the Netherlands cohort study on diet and cancer. Am J Clin Nutr 74:141–148

    CAS  PubMed  Google Scholar 

  • Oh KB, Oh MN, Kim JG, Shin DS, Shin J (2006) Inhibition of sortase-mediated Staphylococcus aureus adhesion to fibronectin via fibronectin-binding protein by sortase inhibitors. Appl Microbiol Biotechnol 70:102–106

    CAS  PubMed  Google Scholar 

  • Paniagua-Perez R, Madrigal-Bujaidar E, Reyes-Cadena S, Molina-Jasso D, Gallaga JP, Silva-Miranda A, Velazco O, Hernandez N, Chamorro G (2005) Genotoxic and cytotoxic studies of β-sitosterol and pteropodine in mouse. J Biomed Biotechnol 2005:242–247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paniagua-Perez R, Madrigal-Bujaidar E, Reyes-Cadena S, Alvarez-Gonzalez I, Sanchez-Chapul L, Perez-Gallaga J, Hernandez N, Flores-Mondragon G, Velasco O (2008) Cell protection induced by β-sitosterol: inhibition of genotoxic damage, stimulation of lymphocyte production, and determination of its antioxidant capacity. Arch Toxicol 82:615–622

    CAS  PubMed  Google Scholar 

  • Park EH, Kahng JH, Lee SH, Shin KH (2001) An anti-inflammatory principle from cactus. Fitoterapia 72:288–290

    CAS  PubMed  Google Scholar 

  • Park C, Moon DO, Rhu CH, Choi BT, Lee WH, Kim GY, Choi YH (2007) β-sitosterol induces anti-proliferation and apoptosis in human leukemic U937 cells through activation of caspase-3 and induction of Bax/Bcl-2 ratio. Biol Pharm Bull 30:1317–1323

    CAS  PubMed  Google Scholar 

  • Park C, Moon DO, Ryu CH, Choi B, Lee W, Kim GY, Choi Y (2008) β-sitosterol sensitizes MDA-MB-231 cells to TRAIL-induced apoptosis. Acta Pharmacol Sin 29:341–348

    CAS  PubMed  Google Scholar 

  • Plosch T, Bloks VW, Terasawa Y, Berdy S, Siegler K, Van Der Sluijs F, Kema IP, Groen AK, Shan B, Kuipers F, Schwarz M (2004) Sitosterolemia in ABC-transporter G5-deficient mice is aggravated on activation of the liver-X receptor. Gastroenterology 126:290–300

    PubMed  Google Scholar 

  • Promprom W, Kupittayanant P, Indrapichate K, Wray S, Kupittayanant S (2010) The effects of pomegranate seed extract and β-sitosterol on rat uterine contractions. Reprod Sci 17:288–296

    CAS  PubMed  Google Scholar 

  • Raicht RF, Cohen BI, Shefer S, Mosbach EH (1975) Sterol balance studies in the rat. Effects of dietary cholesterol and β-sitosterol on sterol balance and rate-limiting enzymes of sterol metabolism. Biochim Biophys Acta 388:374–384

    CAS  PubMed  Google Scholar 

  • Raicht RF, Cohen BI, Fazzini EP, Sarwal AN, Takahashi M (1980) Protective effect of plant sterols against chemically induced colon tumors in rats. Cancer Res 40:403–405

    CAS  PubMed  Google Scholar 

  • Raj AS, Katz M (1984) Corn oil and its minor constituents as inhibitors of DMBA-induced chromosomal breaks in vivo. Mutat Res 136:247–253

    CAS  PubMed  Google Scholar 

  • Renuka-Devi R, Arumughan C (2007) Antiradical efficacy of phytochemical extracts from defatted rice bran. Food Chem Toxicol 45:2014–2021

    CAS  PubMed  Google Scholar 

  • Rosenblat M, Volkova N, Aviram M (2013) Pomegranate phytosterol (β-sitosterol) and polyphenolic antioxidant (punicalagin) addition to statin, significantly protected against macrophage foam cells formation. Atherosclerosis 226(1):110–117

    CAS  PubMed  Google Scholar 

  • Rubis B, Paszel A, Kaczmarek M, Rudzinska M, Jelen H, Rybczynska M (2008) Beneficial or harmful influence of phytosterols on human cells? Br J Nutr 29:1–9

    Google Scholar 

  • Ryan E, Galvin K, O’Connor TP, Maguire AR, O’Brien NM (2006) Fatty acid profile, tocopherol, squalene and phytosterol content of Brazil, pecan, pine, pistachio and cashew nuts. Int J Food Sci Nutr 57:219–228

    CAS  PubMed  Google Scholar 

  • Ryokkynen A, Kayhko UR, Mustonen AM, Kukkonen JV, Nieminen P (2005) Multigenerational exposure to phytosterols in the mouse. Reprod Toxicol 19:535–540

    PubMed  Google Scholar 

  • Salen G, Ahrens EH Jr, Grundy SM (1970) Metabolism of β-sitosterol in man. J Clin Invest 49:952–967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanders DJ, Minter HJ, Howes D, Hepburn PA (2000) The safety evaluation of phytosterol esters. Part 6. The comparative absorption and tissue distribution of phytosterols in the rat. Food Chem Toxicol 38:485–491

    CAS  PubMed  Google Scholar 

  • Santos AR, Niero R, Filho VC, Yunes RA, Pizzolatti MG, Delle Monache F, Calixto JB (1995) Antinociceptive properties of steroids isolated from Phyllanthus corcovadensis in mice. Planta Med 61:329–332

    CAS  PubMed  Google Scholar 

  • Schwartzkopff W, Jantke HJ (1978) Dose-effect of β-sitosterin in type IIa and IIb hypercholesterolemias (author’s transl). MMW Munch Med Wochenschr 120:1575–1578

    CAS  PubMed  Google Scholar 

  • Senatore A, Cataldo A, Iaccarino FP, Elberti MG (1989) Phytochemical and biological study of Uncaria tomentosa. Boll Soc Ital Biol Sper 65:517–520

    CAS  PubMed  Google Scholar 

  • Shen G, Oh SR, Min BS, Lee J, Ahn KS, Kim YH, Lee HK (2008) Phytochemical investigation of Tiarella polyphylla. Arch Pharm Res 31:10–16

    CAS  PubMed  Google Scholar 

  • Sheppard AJ, Newkirk DR, Hubbard WD, Osgood T (1977) Gas–liquid chromatographic determination of cholesterol and other sterols in foods. J Assoc Off Anal Chem 60:1302–1306

    CAS  PubMed  Google Scholar 

  • Shi C, Liu J, Wu F, Zhu X, Yew DT, Xu J (2011) β-sitosterol inhibits high cholesterol-induced platelet β-amyloid release. J Bioenerg Biomembr 43(6):691–697

    CAS  PubMed  Google Scholar 

  • Shi C, Wu F, Zhu X, Xu J (2012) Incorporation of β-sitosterol into the membrane increases resistance to oxidative stress and lipid peroxidation via estrogen receptor-mediated PI3K/GSK3β signaling. Biochim Biophys Acta 1830(3):2538–2544

    Google Scholar 

  • Shi C, Wu F, Xu J (2013) Incorporation of β-sitosterol into mitochondrial membrane enhances mitochondrial function by promoting inner mitochondrial membrane fluidity. J Bioenerg Biomembr 45(3):301–305

    CAS  PubMed  Google Scholar 

  • Shidoji Y, Watanabe M, Oku T, Muto Y, Hosoya N (1980) Inhibition of β-sitosterol on intestinal cholesterol absorption in rat using in vivo dual isotope ratio method. J Nutr Sci Vitaminol (Tokyo) 26:183–188

    CAS  Google Scholar 

  • Singhal AK, Cohen BI, Finver-Sadowsky J, McSherry CK, Mosbach EH (1984) Role of hydrophilic bile acids and of sterols on cholelithiasis in the hamster. J Lipid Res 25:564–570

    CAS  PubMed  Google Scholar 

  • Slota T, Kozlov NA, Ammon HV (1983) Comparison of cholesterol and β-sitosterol: effects on jejunal fluid secretion induced by oleate, and absorption from mixed micellar solutions. Gut 24:653–658

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song YS, Jin C, Park EH (2000) Identification of metabolites of phytosterols in rat feces using GC/MS. Arch Pharm Res 23:599–604

    CAS  PubMed  Google Scholar 

  • Su Y, Wang Z, Yang H, Cao L, Liu F, Bai X, Ruan C (2006) Clinical and molecular genetic analysis of a family with sitosterolemia and co-existing erythrocyte and platelet abnormalities. Haematologica 91:1392–1395

    CAS  PubMed  Google Scholar 

  • Sudhamalla B, Gokara M, Ahalawat N, Amooru DG, Subramanyam R (2010) Molecular dynamics simulation and binding studies of β-sitosterol with human serum albumin and its biological relevance. J Phys Chem B 114(27):9054–9062

    CAS  PubMed  Google Scholar 

  • Sugano M, Morioka H, Ikeda I (1977) A comparison of hypocholesterolemic activity of β-sitosterol and β-sitostanol in rats. J Nutr 107:2011–2019

    CAS  PubMed  Google Scholar 

  • Sugano M, Ikeda I, Imaizumi K, Watanabe M, Andoh M (1982) Effects of β-sitosterol on the concentrations of serum and liver cholesterol and serum apolipoproteins in rats fed butter fat. J Nutr Sci Vitaminol (Tokyo) 28:117–126

    CAS  Google Scholar 

  • Sutherland WH, Nye ER, Macfarlane DJ, Williamson SA, Robertson MC (1992) Cholesterol metabolism in distance runners. Clin Physiol 12:29–37

    CAS  PubMed  Google Scholar 

  • Tamura M, Suzuki H, Itoh K (1998) Effect of β-sitosterol on ultrastructure of liver cells in young and aged mice. Int J Vitam Nutr Res 68:146–148

    CAS  PubMed  Google Scholar 

  • Tan MA, Takayama H, Aimi N, Kitajima M, Franzblau SG, Nonato MG (2008) Antitubercular triterpenes and phytosterols from Pandanus tectorius Soland. Var. laevis. Nat Med (Tokyo) 62:232–235

    CAS  Google Scholar 

  • Tasyriq M, Najmuldeen IA, In LL, Mohamad K, Awang K, Hasima N (2012) 7α-hydroxy-β-sitosterol from Chisocheton tomentosus induces apoptosis via dysregulation of cellular bax/Bcl-2 ratio and cell cycle arrest by downregulating ERK1/2 activation. Evid Based Complement Alternat Med 2012:765316

    PubMed Central  PubMed  Google Scholar 

  • Terry JG, McGill BL, Crouse JR (1995) Evaluation of the use of β-sitostanol as a nonabsorbable marker for quantifying cholesterol absorption. J Lipid Res 36:2267–2271

    CAS  PubMed  Google Scholar 

  • Thuong PT, Jin W, Lee J, Seong R, Lee YM, Seong Y, Song K, Bae K (2005) Inhibitory effect on TNF-alpha-induced IL-8 production in the HT29 cell of constituents from the leaf and stem of Weigela subsessilis. Arch Pharm Res 28:1135–1141

    CAS  PubMed  Google Scholar 

  • Tilvis RS, Miettinen TA (1986) Serum plant sterols and their relation to cholesterol absorption. Am J Clin Nutr 43:92–97

    CAS  PubMed  Google Scholar 

  • Valerio M, Awad AB (2011) β-sitosterol down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in J774A.1 murine macrophages. Int Immunopharmacol 11(8):1012–1017

    CAS  PubMed  Google Scholar 

  • Van-Rensburg SJ, Daniels WM, van Zyl JM, Taljaard JJ (2000) A comparative study of the effects of cholesterol, β-sitosterol, β-sitosterol glucoside, dehydroepiandrosterone sulphate and melatonin on in vitro lipid peroxidation. Metab Brain Dis 15:257–265

    CAS  PubMed  Google Scholar 

  • Villasenor IM, Angelada J, Canlas AP, Echegoyen D (2002) Bioactivity studies on β-sitosterol and its glucoside. Phytother Res 16:417–421

    CAS  PubMed  Google Scholar 

  • Vivancos M, Moreno JJ (2005) β-sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic Biol Med 39:91–97

    CAS  PubMed  Google Scholar 

  • Von-Holtz RL, Fink CS, Awad AB (1998) β-sitosterol activates the sphingomyelin cycle and induces apoptosis in LNCaP human prostate cancer cells. Nutr Cancer 32:8–12

    CAS  PubMed  Google Scholar 

  • Vuoristo M, Tilvis R, Miettinen TA (1988) Serum plant sterols and lathosterol related to cholesterol absorption in coeliac disease. Clin Chim Acta 174:213–224

    CAS  PubMed  Google Scholar 

  • Wang L, Yang YJ, Chen SH, Ge XR, Xu CJ, Gui SQ (2006) Effects of β-sitosterol on microtubular systems in cervical cancer cells. Zhonghua Yi Xue Za Zhi 86:2771–2775

    CAS  PubMed  Google Scholar 

  • Wilund KR, Yu L, Xu F, Vega GL, Grundy SM, Cohen JC, Hobbs HH (2004) No association between plasma levels of plant sterols and atherosclerosis in mice and men. Arterioscler Thromb Vasc Biol 24:2326–2332

    CAS  PubMed  Google Scholar 

  • Wu GX, Lin YX, Ou MR, Tan DF (2003) An experimental study (II) on the inhibition of prostatic hyperplasia by extract of seeds of Brassica alba. Zhongguo Zhong Yao Za Zhi 28:643–646

    PubMed  Google Scholar 

  • Xiao M, Yang Z, Jiu M, You J, Xiao R (1992) The antigastroulcerative activity of β-sitosterol- β-D-glucoside and its aglycone in rats. Hua Xi Yi Ke Da Xue Xue Bao 23:98–101

    CAS  PubMed  Google Scholar 

  • Xu G, Guan L, Sun J, Chen ZY (2009) Oxidation of cholesterol and β-sitosterol and prevention by natural antioxidants. J Agric Food Chem 57:9284–9292

    CAS  PubMed  Google Scholar 

  • Yamanashi Y, Takada T, Suzuki H (2007) Niemann-Pick C1-like 1 overexpression facilitates ezetimibe-sensitive cholesterol and β-sitosterol uptake in CaCo-2 cells. J Pharmacol Exp Ther 320:559–564

    CAS  PubMed  Google Scholar 

  • Yang C, Yu L, Li W, Xu F, Cohen JC, Hobbs HH (2004) Disruption of cholesterol homeostasis by plant sterols. J Clin Invest 114:813–822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang C, Chen ZY, Wong SL, Liu J, Liang YT, Lau CW, Lee HK, Huang Y, Tsang SY (2013) β-Sitosterol oxidation products attenuate vasorelaxation by increasing reactive oxygen species and cyclooxygenase-2. Cardiovasc Res 97(3):520–532

    CAS  PubMed  Google Scholar 

  • Yeshurun D, Gotto AM Jr (1976) Drug treatment of hyperlipidemia. Am J Med 60:379–396

    CAS  PubMed  Google Scholar 

  • Yuk JE, Woo JS, Yun CY, Lee JS, Kim JH, Song GY, Yang EJ, Hur IK, Kim IS (2007) Effects of lactose-β-sitosterol and β-sitosterol on ovalbumin-induced lung inflammation in actively sensitized mice. Int Immunopharmacol 7:1517–1527

    CAS  PubMed  Google Scholar 

  • Zhang YW, Morita I, Zhang L, Shao G, Yao XS, Murota S (2000) Screening of anti-hypoxia/reoxygenation agents by an in vitro method. Part 2: inhibition of tyrosine kinase activation prevented hypoxia/reoxygenation-induced injury in endothelial gap junctional intercellular communication. Planta Med 66:119–123

    CAS  PubMed  Google Scholar 

  • Zhao J, Zhang CY, Xu DM, Huang GQ, Xu YL, Wang ZY, Fang SD, Chen Y, Gu YL (1990) The antiatherogenic effects of components isolated from pollen typhae. Thromb Res 57:957–966

    CAS  PubMed  Google Scholar 

  • Zhong Y, Cui S (1992) Effective chemical constituents of Artemisia argyi Levl. et Vant for inhibition of platelet aggregation. Zhongguo Zhong Yao Za Zhi 17(353–4):383

    Google Scholar 

  • Zhu M (1998) CNS active principles from Alangium plantanifolium. Planta Med 64:8–11

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge with thanks the librarien of Agharkar Research Institute, Poona College of Pharmacy, AFMC and National Chemical Laboratory for their kind support and help during referencing.

Conflicts of Interest

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirishkumar D. Ambavade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambavade, S.D., Misar, A.V. & Ambavade, P.D. Pharmacological, nutritional, and analytical aspects of β-sitosterol: a review. Orient Pharm Exp Med 14, 193–211 (2014). https://doi.org/10.1007/s13596-014-0151-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-014-0151-9

Keywords

Navigation